Alg 2B Ellipse Summary Fall 2017

Ellipse The set of all points P in a plane such that the sum of the distances from P to two fixed points F_1 and F_2 is a given constant.

Major Axis: The longer Axis. Contains the Foci.

Minor Axis: The shorter Axis. Perpendicular bisector of the Major Axis.

Vertices: Endpoints of the Major Axis and are equidistant from the center. Use the letter a.

Co-Vertices: Endpoints of the Minor Axis and are equidistant from the center. Use the letter b.

Foci: The two fixed points. Located on the Major Axis and are equidistant from the center. Use the letter c.

Standard Form for the equation of an Ellipse with center at (0,0):

Horizontal Major Axis

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

 $a^2 > b^2$

Vertical Major Axis

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

Vertices: $(\pm a, 0)$

Co-Vertices: $(0,\pm b)$

Foci: $(\pm c, 0)$

Major Axis length = 2aMinor Axis length = 2b Vertices: $(0,\pm a)$ Co-Vertices: $(\pm b,0)$

Foci: $(0,\pm c)$

Major Axis length = 2aMinor Axis length = 2b

$$c^2 = a^2 - b^2$$

Standard Form for the equation of an Ellipse with center at (h, k):

Horizontal Major Axis

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

 $a^2 > b^2$

Vertical Major Axis

$$\frac{(x-h)^2}{h^2} + \frac{(y-k)^2}{a^2} = 1$$

Vertices: $(h \pm a, k)$

Co-Vertices: $(h, k \pm b)$

Foci: $(h \pm c, k)$

Major Axis length = 2aMinor Axis length = 2b Vertices: $(h, k \pm a)$

Co-Vertices: $(h \pm b, k)$

Foci: $(h, k \pm c)$

Major Axis length = 2a

Minor Axis length = 2b