The distance form

The distance between the two po found by using the following for

1.V1) & (12.V2) is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The distance formula is the actually the hypotenuse of a right triangle. Therefore, the distance formula is actually a variation of the Pythagorean Theorem.

The four Conic Sect

- Circle
- Ellips
- Hvperbc
- Parabo

Use the distance formula to 1 expression for the length of the

$$r = \sqrt{(x-h^2)^2 + (y-k^2)^2}$$

If you square both s
$$(r)^2 = \left(\sqrt{(x-h)^2 + (y-k)^2}\right)^2$$

$$r^2 \stackrel{\text{You ac}}{=} (x - h)^2 + (y - k)^2$$

This is the equation of a circle whose cen and whose radiu ${\bf r}$.

Equation of a circle whose center is at t (h.k): and radiu

$$(x-h)^2 + (y-k)^2 = r^2$$

Equation of a circle whose center is at the and radius

$$x^2 + v^2 = r^2$$

Find the equation of the circle that is a transl
$$2 + 1^2 = 36$$

5 units right and 7 units c
 $(x-5)^2 + (y+7)^2 = 36$

The circle $(x \cdot ^2 + (v + ; ^2 = 100))$ was translated 4 uni and 9 units up. Write the new equation of the original center (3 -2) New center (-1, 7)New eq $(x+1)^2 + (y-7)^2 = (00)$

 $^{2} + v^{2} = 3$; Given the equation of a circ state the coordinates of the center and th

State the coordinates of the center and the Center:

Radius =
$$\sqrt{32}$$
 $\sqrt{2}$
 $\sqrt{2}$

Center: (-4 , ¬)

Given the equation of a circle is $(x+4)^2 + (y-7)^2 = 81$ state the coordinates of the center and the radius.

5right Tdown

Given the equation of a circle is $(x-5)^2 + (y+7)^2 = 441$ State the coordinates of the center of the circle and find the length of the diameter.

(5,-7)

Diameter = 4 2

r=-441 r=r441 = 21 d=-2.r=2(21)

The equation of a circle is $(x-3)^2 + y^2 = 45$

State the coordinates of the center of the cir find the length of the diam

Diameter = 65 Center:

(3,0)

Y = 145 = 315 J = 2.7 = 2(315) = 615

The center of a circle is (-4.9) and the radius is 5

$$(x+4)^{2}+(y-9)^{2}=35$$
The sets of the

The center of a circle is (0,0) and the point (5,-8) is on the circle. Write the equation of this circle.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 The radius is the distance from the center to any point on the circle.

the radius is the distance from the center to any point on the circle.

$$((5-0)^2 + (8-0)^2)$$

$$(5-0)^2 + (8-0)^2$$

$$(89)^2$$

$$(89)^2$$

$$(89)^2$$

$$(89)^2$$

$$(89)^2$$

$$(89)^2$$

$$(89)^2$$

$$(89)^2$$

The center of a circle is (21,9) and the point (16,-1) is on the circle. Write the equation of the circle.

$$(x-21)^2+(y-9)^2=125$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The radius is the distance from the center to any point on the circle.

$$V(5)^2 + (0)^2$$

$$V = V(25) \longrightarrow V^2 = 125$$