Solve each. Round to the nearest hundredth.

$$1. \ \frac{3}{2} \log_2 4 - \frac{1}{2} \log_2 x = 3$$

2.
$$\log_4(x^2 - 12x) = 3$$

- 3. Let the function g be defined by g(x) = 5x + 2. If $\sqrt{g\left(\frac{a}{2}\right)} = 6$, what is the value of a?
- A. $\frac{1}{\sqrt{6}}$ B. $\frac{1}{\sqrt{2}}$ C. $\frac{5}{2}$ D. $\frac{34}{5}$ E. $\frac{68}{5}$

- 4. A straight fence is to be constructed from posts 6 inches wide and separated by lengths of chain 5 feet long. If a certain fence begins and ends with a post, which of the following could not be the length of the fence in feet? (12 inches = 1 foot)
- A. 17
- B. 28
- C. 35
- D. 39
- E. 50

Wednesday, November 8, 2017 Bellwork Ala 2B

Answers

Solve each. Round to the nearest hundredth.

1.
$$\left(\frac{3}{2}\log_2 4 - \frac{1}{2}\log_2 x = 3\right)$$
 2

$$3 \log_2 4 - \log_2 x = 6$$

$$\log_2 4^3 - \log_2 x = 6$$

$$\log_2 \frac{64}{x} = 6$$

$$2^6 = \frac{64}{x}$$

$$64 = \frac{64}{x}$$

$$x = 1$$

$$2. \log_4(x^2 - 12x) = 3$$

$$4^{3} = X^{2} - 12X$$
 $64 = X^{2} - 12X$
 $0 = X^{2} - 12X - 64$
 $(X - 16)(X + 4)$
 -16×44

Both are sol's

3. Let the function g be defined by
$$g(x) = 5x + 2$$
. If $\sqrt{g\left(\frac{a}{2}\right)} = 6$, what is the value of a?

A.
$$\frac{1}{\sqrt{6}}$$

B.
$$\frac{1}{\sqrt{2}}$$

C.
$$\frac{5}{2}$$

D.
$$\frac{34}{5}$$

B.
$$\frac{1}{\sqrt{2}}$$
 C. $\frac{5}{2}$ D. $\frac{34}{5}$ E. $\frac{68}{5}$

$$\left(\sqrt{5\left(\frac{9}{2}\right)+2}\right)^{2}=\left(6\right)^{2}$$

$$5(\frac{9}{2}) + 2 = 36$$

$$\frac{2}{5} \cdot \frac{5}{2}a = 34 \cdot \frac{3}{5}$$

$$9 = \frac{68}{5}$$

4. A straight fence is to be constructed from posts 6 inches wide and separated by lengths of chain 5 feet long. If a certain fence begins and ends with a post, which of the following could not be the length of the fence in feet? (12 inches = 1 foot)

6"=,5ft

s's's's' every additional section adds 5.5"