1. The value of an investment in 2009 was \$110,000 and was growing 5.2% each year. Find the number of years until the investment is worth \$300,000. Round to the nearest hundredth.

- 2. In a 5-kilometer race, runners recorded times (in minutes:seconds) of 24:04, 22:45, 19:53, and 21:33. What was the difference between the slowest runner and the fastest runner?
- A. 2:23
- B. 2:45
- C. 4:11
- D. 4:51
- E. 5:38

- 3. If a b is a multiple of 7, which of the following must also be a multiple of 7?

- A. ab B. a+b C. $\frac{a+b}{2}$ D. $\frac{b-a}{2}$ E. b-a

- 4. Alan, Fred, and Mark are going to buy a computer that costs \$540. If Alan pays \$40 more than Fred and Fred pays twice as much as Mark, then how much does Mark pay?
- A. \$100
- B. \$140
- C. \$160
- D. \$200
- E. \$240

- 5. A watch loses x minutes every y hours. At this rate how many hours will the watch lose in one week?
- A. 7*xy*

- B. $\frac{2x}{5y}$ C. $\frac{5y}{2x}$ D. $\frac{14y}{5x}$ E. $\frac{14x}{5y}$

Bellwork

Alg 2B

Monday, October 30, 2017

ANSWERS

1. The value of an investment in 2009 was \$110,000 and was growing 5.2% each year. Find the number of years until the investment is worth \$300,000. Round to the nearest hundredth.

$$\frac{110,000(1.052)^{x} = 300,000}{(1.052)^{x} = \frac{300,000}{110,000} = \frac{30}{11}}$$

$$x = 19.79 \text{ yrs}$$

$$\log_{1.052}\left(\frac{30}{11}\right) = X \qquad X = \frac{\log\left(\frac{30}{11}\right)}{\log \log 2}$$

$$X = \frac{\log(\frac{50}{11})}{\log \log 52}$$

2. In a 5-kilometer race, runners recorded times (in minutes:seconds) of 24:04, 22:45, 19:53, and 21:33. What was the difference between the slowest runner and the fastest runner?

- A. 2:23
- B. 2:45
- C. 4:11
- D. 4:51
- E. 5:38

3. If a - b is a multiple of 7, which of the following must also be a multiple of 7?

B.
$$a+b$$

C.
$$\frac{a+b}{2}$$

D.
$$\frac{b-a}{2}$$

A.
$$ab$$
 B. $a+b$ C. $\frac{a+b}{2}$ D. $\frac{b-a}{2}$ E. $b-a$

4. Alan, Fred, and Mark are going to buy a computer that costs \$540. If Alan pays \$40 more than Fred and Fred pays twice as much as Mark, then how much does Mark pay?

- A. \$100
- B. \$140
- C. \$160
- D. \$200
- E. \$240

5. A watch loses x minutes every y hours. At this rate how many hours will the watch lose in one week?

- A. 7xy

- B. $\frac{2x}{5y}$ C. $\frac{5y}{2x}$ D. $\frac{14y}{5x}$ E. $\frac{14x}{5y}$