Alg 2B Review Sections 8-1 to 8-4 Fall 2017

1. Does each exponential equation equation represent Growth or Decay?

a)
$$y = 450(\frac{13}{12})^x$$

b)
$$y = 18(1.0003)^x$$

c)
$$y = 9580(0.998)^x$$

2. Use each percent change (increase or decrease) to find the base b of an exponential function.

- a) 1.85% increase
- b) 38% decrease
- c) 0.43% decrease

d) 95% increase

3. Give the percent change (state if it's an increase or decrease) that each exponential equation models.

a)
$$y = 1300(0.95)^x$$

b)
$$y = 2(1.0075)^x$$

4. The population of a city was growing 3.8% each year throughout the late 1800's into the early 1900's. In 1900 the population was 9,250.

- a) Find the population in 1914.
- b) Find the population in 1895.
- c) In how many years will the population reach 50,000? Round to the nearest hundredth.

5. The value of a house in 2005 was \$139,000. The value of the house has been declining 5.25% each year.

- a) Find the value of the house in 2011.
- b) In how many years will the house's value first fall below \$50,000? Round to the nearest hundredth.

6. Rewrite each exponential equation as a logarithm.

a)
$$7^x = 343$$

b)
$$10^5 = x$$

c)
$$x^7 = 1200$$

7. Rewrite each logarithmic equation as an exponential.

a)
$$\log_3 x = 4$$

b)
$$\log_x 25 = 2$$

c)
$$log400 = x$$

8. Evaluate each logarithm.

- a) log₉9
- b) log₄1
- c) log400
- d) log₃27
- e) log₆₄8

f) $\log_7 \frac{1}{49}$

Use the properties of logarithms to write each as a single logarithm.

a)
$$\log_4 K + 6 \log_4 W$$

b)
$$5\log A - 2\log 7$$

c)
$$\frac{1}{2}\log_7 W - \log_7 X + 2\log_7 Y$$

10. Use the properties of logarithms to expand each logarithm into several logarithms.

a)
$$\log_2 \frac{R^4}{\sqrt{C}}$$

b)
$$\log_4 \frac{K^5 R^8}{NQ^6}$$

11. Write as single logarithm then evaluate.

a)
$$3\log_6 3 + 2\log_6 4 - \log_6 2$$

b)
$$\log_{12}9 - \frac{1}{2}\log_{12}16 + 2\log_{12}8$$

12. Solve each. Round to the nearest hundredth.

a)
$$5^x = 43$$

b)
$$10^x = 1501$$

c)
$$\log_3 15 = x$$

d)
$$e^x = 11$$

e)
$$\log_6 X = 3$$

f)
$$3^{x+2} - 15 = 32$$

g)
$$2 \cdot e^{4x} + 1 = 99$$

13. Match each graph with it's correct equation.

$$y = 8(2)^x$$

$$y = 2(0.4)^x$$

$$y = 4(2)^x$$

$$y = 4(2)^x$$
 $y = 2(0.7)^x$ $y = 4(5)^x$

$$y = 4(5)^x$$

14. You invest \$30,000 in an account that pays 9% annual interest. Find the value of the account after 20 years if interest is calculated each of the following ways.

Here are the interest formulas:

$$I = prt$$

$$Y = P(1 + \frac{r}{n})^{nt} \qquad Y = Pe^{rt}$$

$$Y = Pe^{r_i}$$

a) Simple interest

b) Interest compounded annually

c) Interest compounded monthly

d) Interest compounded continuously

15. The half-life of a certain radio active substance is 40 minutes. If there are 500g of this substance at 8:00am find the amount remaining at 2:30pm the same day. Round to the nearest hundredth.

16. The number of cells of a certain bacteria doubles every 30 minutes. If there are 200 cells at 9:00 am find the number of cells at 4:45pm the same day.

Alg 2B

Review Sections 8-1 to 8-4 Fall 2017

1. a) Growth

wth c) Decay
b)
$$b = 0.62$$
 c

c)
$$h = 9957$$

c)
$$b = .9957$$
 d) $b = 1.95$

3. a) 5% decrease b) 0.75% increase

2. a) b = 1.0185

4.
$$y = 9250(1.038)^x$$

a)
$$9250(1.038)^{14} = 15592$$

4.
$$y = 9250(1.038)^x$$
 a) $9250(1.038)^{14} = 15592$ b) $9250(1.038)^{-5} = 76774$ c) $9250(1.038)^x = 50$

c)
$$9250(1.038)^x = 50000 \rightarrow x = 45.24$$

5.
$$y = 139,000(.9475)^x$$

a)
$$139,000(.9475)^6 = $100,575.02$$

b)
$$139,000(.9475)^x = 50,000 \rightarrow x = 18.96$$

$$139,000(.9475)^{\circ} = $100,575.0$$

6. a)
$$\log_7 343 = x$$
 b) $\log x = 5$

c)
$$\log_x 1200 = 7$$

7. a)
$$3^4 = x$$
 b) $x^2 = 25$ c) $10^x = 400$

$$D) x^2 = 2$$

c)
$$10^x = 400$$

b) 0 c) 2.60 d) 3 e)
$$\frac{1}{2}$$
 f) -2

b)
$$\log \frac{A^5}{40}$$

9. a)
$$\log_4(KW^6)$$
 b) $\log \frac{A^5}{49}$ c) $\log_7 \frac{\sqrt{W} \cdot Y^2}{X}$

10. a)
$$4\log_2 R - \frac{1}{2}\log_2 C$$

10. a)
$$4\log_2 R - \frac{1}{2}\log_2 C$$
 b) $5\log_4 K + 8\log_4 R - \log_4 N - 6\log_4 Q$

11. a)
$$\log_{6}216 = 3$$
 b) $\log_{12}144 = 2$

12. a)
$$x = 2.34$$
 b) $x = 3.18$ c) $x = 2.46$ d) $x = 2.40$ e) $x = 216$

$$r = 3.18$$

$$c) r = 2.46$$

d)
$$x = 2.40$$

$$r = 216$$

f) x = 1.50 g) x = 0.97

g)
$$x = 0.97$$

B
$$v = 2(0.4)^x$$

$$E v = 4(2)^x$$

13. C
$$y = 8(2)^x$$
 B $y = 2(0.4)^x$ E $y = 4(2)^x$ A $y = 2(0.7)^x$ D $y = 4(5)^x$

$$\gamma_{\rm in} = 4(5)^{\rm x}$$

14. a) \$8400.00 b) \$168,132.32 c) \$180,274.55 d) \$181,489.42 15. 0.58g 16. 9,268,190