Alg 2B Review Sections 8-1 to 8-4 Fall 2017

- 1. Does each exponential equation equation represent Growth or Decay?
- a) $y = 450(\frac{13}{12})^x$
- b) $y = 18(1.0003)^x$
- c) $y = 9580(0.998)^x$
- 2. Use each percent change (increase or decrease) to find the base b of an exponential function.
- a) 1.85% increase
- b) 38% decrease
- c) 0.43% decrease
- d) 95% increase
- 3. Give the percent change (state if it's an increase or decrease) that each exponential equation models.
- a) $y = 1300(0.95)^x$

- b) $y = 2(1.0075)^x$
- 4. The population of a city was growing 3.8% each year throughout the late 1800's into the early 1900's. In 1900 the population was 9,250.
- a) Find the population in 1914.
- b) Find the population in 1895.
- c) In how many years will the population reach 50,000? Round to the nearest hundredth.
- 5. The value of a house in 2005 was \$139,000. The value of the house has been declining 5.25% each year.
- a) Find the value of the house in 2011.
- b) In how many years will the house's value first fall below \$50,000? Round to the nearest hundredth.
- 6. Rewrite each exponential equation as a logarithm.
- a) $7^x = 343$
- b) $10^5 = x$
- c) $x^7 = 1200$
- 7. Rewrite each logarithmic equation as an exponential.
- a) $\log_3 x = 4$
- b) $\log_x 25 = 2$
- c) log400 = x

- 8. Evaluate each logarithm.
- a) log₉9
- b) log_41
- c) log400
- d) log_327
- e) log₆₄8
- f) $\log_7 \frac{1}{49}$
- 9. Use the properties of logarithms to write each as a single logarithm.
- a) $\log_4 K + 6 \log_4 W$
- b) $5\log A 2\log 7$
- c) $\frac{1}{2}\log_7 W \log_7 X + 2\log_7 Y$
- 10. Use the properties of logarithms to expand each logarithm into several logarithms.
- a) $\log_2 \frac{R^4}{\sqrt{C}}$

- b) $\log_4 \frac{K^5 R^8}{NQ^6}$
- 11. Write as single logarithm then evaluate.
- a) $3\log_6 3 + 2\log_6 4 \log_6 2$

- b) $\log_{12}9 \frac{1}{2}\log_{12}16 + 2\log_{12}8$
- 12. Solve each. Round to the nearest hundredth.
- a) $5^x = 43$
- b) $10^x = 1501$
- c) $\log_3 15 = x$
- d) $e^x = 11$
- e) $\log_6 X = 3$

- f) $3^{x+2} 15 = 32$
- g) $2 \cdot e^{4x} + 1 = 99$

13. Match each graph with it's correct equation.

$$y = 8(2)^x$$

$$y = 2(0.4)^x$$

$$y = 4(2)^{3}$$

$$y = 2(0.7)^x$$

$$y = 4(2)^x$$
 $y = 2(0.7)^x$ $y = 4(5)^x$

14. You invest \$30,000 in an account that pays 9% annual interest. Find the value of the account after 20 years if interest is calculated each of the following ways.

Here are the interest formulas: I = prt

$$I = nri$$

$$Y = P(1 + \frac{r}{n})^{nt}$$

$$Y = Pe^{rt}$$

a) Simple interest

b) Interest compounded annually

c) Interest compounded monthly

d) Interest compounded continuously

15. The half-life of a certain radio active substance is 40 minutes. If there are 500g of this substance at 8:00am find the amount remaining at 2:30pm the same day. Round to the nearest hundredth.

16. The number of cells of a certain bacteria doubles every 30 minutes. If there are 200 cells at 9:00 am find the number of cells at 4:45pm the same day.

- Review Sections 8-1 to 8-4 Fall 2017

1. a) Growth

Alg 2B

- b) Growth
- c) Decay

- 2. a) b = 1.0185

- b) b = 0.62 c) b = .9957 d) b = 1.95

3. a) 5% decrease

- b) 0.75% increase
- 4. $y = 9250(1.038)^x$ a) $9250(1.038)^{14} = 15592$
- b) $9250(1.038)^{-5} = 7676$ c) $9250(1.038)^x = 50000 \rightarrow x = 45.24$ 5. $y = 139,000(.9475)^x$ a) $139,000(.9475)^6 = \$100,575.02$

- b) $139,000(.9475)^x = 50,000 \rightarrow x = 18.96$
- 6. a) $\log_7 343 = x$ b) $\log x = 5$

c) $\log_x 1200 = 7$

- 7. a) $3^4 = x$ 8. a) 1
- b) $x^2 = 25$ c) $10^x = 400$
- b) 0 c) 2.60 d) 3 e) $\frac{1}{2}$ f) -2

- 9. a) $\log_4(KW^6)$ b) $\log \frac{A^5}{49}$ c) $\log_7 \frac{\sqrt{W} \cdot Y^2}{X}$
- 10. a) $4\log_2 R \frac{1}{2}\log_2 C$
- b) $5\log_4 K + 8\log_4 R \log_4 N 6\log_4 Q$
- 11. a) $\log_6 216 = 3$ b) $\log_{12} 144 = 2$
- 12. a) x = 2.34 b) x = 3.18 c) x = 2.46 d) x = 2.40 e) x = 216

f) x = 1.50

- g) x = 0.97
- 13. C $y = 8(2)^x$ B $y = 2(0.4)^x$ E $y = 4(2)^x$ A $y = 2(0.7)^x$ D $y = 4(5)^x$

- 14. a) \$8400.00 b) \$168,132.32 c) \$180,274.55 d) \$181,489.42
- 15. 0.58g
- 16. 9,268,190