Every math operation has it's inverse.

Inverse operations "undo" each other.

We solve equations by using inverses to get the variable by itself.

Find the equation of the inverse for this function:

$$y = \sqrt{\frac{4x^3 - 7}{8}} + 1$$

$$\times = \sqrt{\frac{4y^3 - 7}{8}} + 1$$
Switch the x and y.

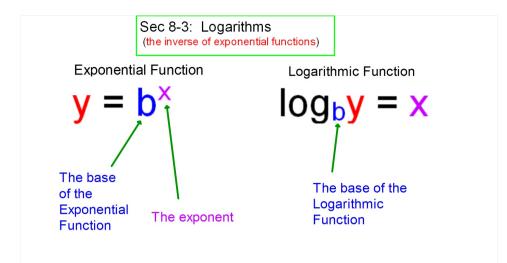
Then solve for y.

Given Operation	Inverse Operation
Addition	Subtraction
Division	Multiplication
Squaring	Square Root
Cube Root	Cubing

Find the equation of the inverse.

$$y = 10^{x}$$

At this point you don't know how to do this!!!


To solve for x in an exponential equation: $y = 10^x$ we use the inverse operation called:

Logarithm

How do you say this?

$$Log_b y = x$$

Log base b of y equals x

Exponential Function:

$$y = b^{x}$$

Logarithmic Function:

"Log, base b, of y equals x"

$$log_b y = x$$

Rewriting an equation into Logarithmic form.

Exponential Function:

Logarithmic Function:

Exponential Equation

Range:
y>0
Any real number

y = b

b>0, b**‡**1

Logarithmic Equation

$$log_b y = x$$

You can only input positive

numbers to

a logarithm and you can

get anything out of a logarithm.

Range: Domain:
Any real x > 0
number

b: b>0, b**#**1

Another way to remember how to write an Exponential Equation in Logarithmic Form:

Exponential Form:

$$x = y^z$$

becomes

Lograrithmic Form:

$$z = Log_y x$$

Get a small white board, marker, and rag.

1. Rewrite each into logarithmic form.

a.
$$5^{x} = 40$$
 $\longrightarrow \log_{5} 40 = x$

b.
$$6^2 = x$$
 \longrightarrow $6^2 = x$

c.
$$x^2 = 20$$
 \longrightarrow $\log_x 20 = 2$

Write in Logarithmic Form:

$$10^{x} = 125$$

 $LOG_{10}125 \rightarrow "LOG base 10 of 125" \rightarrow LOG125$

LOG₁₀ is called the Common Logarithm and is written without the 10.

The button on the calculator LOG is for Common Logarithms LOG₁₀

2. Write each in exponential form.

a)
$$\log_x 169 = 2$$
 b) $\log_8 x = 1$

$$x 169 = 2$$

$$\begin{array}{ccc}
\downarrow & & \downarrow \\
\times^{2}=169 & & \aleph=\times
\end{array}$$

b)
$$Log_8 x =$$

$$Log_8 x =$$

c)
$$Log_{4}^{3} = x$$

Evaluate each: (hint: think of each as an exponential)

$$4^{\times}=1 \Rightarrow x=0$$

3. $\log_{7}(7)$

$$7^{\times} = 7 \rightarrow \times = 1$$

5.

$$4^{x}=1 \rightarrow x=0$$
 $3^{x}=9 \rightarrow x=2$

4.
$$\log_{25}5 = \frac{1}{2}$$

$$25^{\times} = 5 \longrightarrow \sqrt{25} = 5$$

$$X = \frac{1}{2}$$