As **b** gets smaller, but still positive, the graph decreases faster ("steeper")

$$D y = 4(2)^x C y = 2(5)^x B y = 2(8)^x A y = 4(5)^x$$

Graphs of
$$y = a \cdot b^x$$

- a: the y-intercept. If a is negative graph is upside down (x-axis reflection)
- b: Growth or Decay Factor

Growth Factor: The larger the value of b the faster the graph increases. b>1

Decay Factor: The smaller the value of b the faster the graph decreases 0
b<1

Simple Interest:

You only earn interest in the initial amount you invested.

You invest \$10,000 in an account that pays 8% annual interest.

How much will you have after 10 years if you only get simple interest?

$$I = 10,000(.08)(10)$$

$$I = 5000$$

$$|0,000 + 5000 - [5,000]$$

Compounding Interest: earning interest on the interest.

You invest \$10,000 in an account that pays 8% annual interest.

How much will you have after 10 years if interest is compounded annually?

end of 1st year you'll have: 10,000(1.08) end of 2nd year you'll have: 10,000(1.08)(1.08) end of 3rd year you'll have: 10,000(1.08)(1.08)(1.08)

This is basic exponential growth. After 10 years you'll have: $10,000(1.08)^{10}$ = \$21,589.25

You invest \$10,000 in an account that pays 8% annual interest.

How much more will you have after 20 years if interest is compounded annually versus simple interest?

Simple Interest

Interest Compounded

$$0000 + 10,000(.05)(20)$$

46,609.57 - 26,000 = \$20,609.57

You get \$20,609.57 more after 20 years by compounding interest.

Compound Interest Formula:

$$A = P(1 + \frac{r}{n})^{nt}$$

A = final amount

P = Principal (intial amount)

r = inerest rate (as a decimal)

n = # of times interest is compounded each year

t = # of years

What if you compound interest more often than annually?

You should earn more interest!

Find the amount of money you will have after 20 years if you invest \$10,000 at 8% annual interest compounded quarterly.

$$A = P(1 + \frac{r}{n})^{nt}$$

$$= 19,000 (1 + \frac{.05}{4})^{4.20}$$

$$= 848,754.39$$