Solving equations with rational exponents Take the following steps when solving an equation where the variable is being raised to a rational exponent.

- 1. Isolate the term or quantity that is being raised to the rational exponent on one side of the equation.
- 2. Raise both sides of the equation to the reciprocal power.
- 3. Finish solving for the variable.

Solve.
$$(x-5)^{\frac{3}{4}} + 34 = 7$$

$$= (-27)^{\frac{3}{4}} + 34 = 7$$

$$= (-27)^{\frac{3}{4}} = (-27)^{\frac{3}{$$

Solve.
$$2(x+11)^{\frac{2}{5}} + 310 = 328$$

$$-310 - 310$$

$$\frac{2(x+11)^{\frac{2}{5}}}{2} = \frac{18}{2}$$

$$(x+11)^{\frac{2}{5}} = 9)^{\frac{5}{2}} \Rightarrow (9)^{\frac{5}{2}}$$

$$= (\pm 3)^{\frac{5}{2}}$$

$$x+11 = \pm 243 = \pm 243$$

$$= \pm 243$$

$$= 243-11$$

$$= 243-11$$

$$= 243-11$$

$$= 243-11$$

$$= 243-11$$

Solve.

$$(x+7)^{\frac{2}{3}} + 2 = 18$$

$$((x+7)^{\frac{2}{3}})^{\frac{3}{2}} = (16)^{\frac{3}{2}} = (16)^{\frac{3}{2}} = 164$$

$$\times +7 = \pm 64 - 7$$

$$+64 - 7$$

$$\times = 57, -71$$

Solving radical equations Take the following steps when solving an equation where the variable is in the radicand.

- 1. Isolate the radical on one side of the equation.
- Raise both sides of the equation to the power equal to the index of the radical.
- 3. Finish solving for the variable.

Solve.
$$\sqrt{x^2 + 5} = \sqrt{x + 11}$$

$$x^2 + 5 = x + 11$$

$$x^2 - x - 6 = 0$$

$$(x - 3)(x + 2) = 0$$

$$x = 3, -2$$

Solve.
$$\sqrt[3]{5x-9} + 40 = 13$$
 $-40 - 40$

$$(\sqrt[3]{5x-9})^{3} = (-27)^{3}$$

$$5x-9 = -19683$$

$$5x = -19674$$

$$5 = -3934.8$$

What is different about this one? There is an x outside of the radical.

$$\sqrt{3x-5} + 1 = x$$

$$(\sqrt{3x-5})^2 = (x-1)^2$$

$$3x-5 = x^2-2x+1$$

$$0 = x^2-5x+b$$

$$0 = (x-3)(x-2)$$

$$x = 2,3$$

Solve.

$$(3x+13)^{\frac{1}{2}} - 5 = x + 5$$

$$(33x+13)^{\frac{1}{2}} - (3x+13)^{\frac{1}{2}} - (3x+13)^{\frac{$$

The last step in any solving process is to:

CHECK YOUR ANSWERS!

-3 is an extraneous solution because it doesn't make the original equation true. Therefore, x=5 is the only solution.