Simplify. Assume all variables are positive.

$$\sqrt{6ab^3} \cdot \sqrt{2a^6b^5}$$

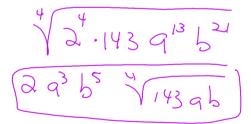
below are two methods to simplify this expression

$$\sqrt{6ab^3} \cdot \sqrt{2a^6b^5}$$

$$\sqrt{\frac{6ab^3}{2\cdot 3}} \cdot \sqrt{\frac{2a^6b^5}{2a^6b^5}}$$
 $\sqrt{\frac{2^2 \cdot 3}{3^3b^4}} \sqrt{\frac{3a}{3a}}$

Simplify. Assume all variables are positive.

$$\sqrt[4]{22a^3b^8} \cdot \sqrt[4]{4ab} \cdot \sqrt[4]{26a^9b^{12}}$$



You could also find the product of 22, 4, and 26 then find the largest 4th power that is a factor of this product then find the roots.

Simplify. Assume all variables are positive.

You could also find the product of 15, 21, and 24 then find the largest 3rd power that is a factor of this product then find the roots.

Simplify. Assume that all variables are positive.

if
$$\sqrt{a}$$
 and \sqrt{b} are real #'s and $b \neq 0$, then
$$\sqrt{3xy^4} \qquad \qquad \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

$$\sqrt{8x^4 y^9} = \sqrt{x^9 y^9$$

You can turn the ratio of two radicals, if they have the same index, into one radical, simplify the fraction, then find the roots.

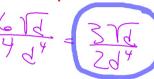
Simplify. Assume that all variables are positive.

$$\sqrt{\frac{36d}{16d^8}}$$

this works in the other direction too.

if $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real #'s and $b \neq 0$, then

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$



You can separate the single radical into two separate radicals, one for the numerator and one for the denominator, do the roots, then simplify the fraction.

Simplify. Assume that all variables are positive.

$$\frac{\sqrt[3]{5a^7b^2}}{\sqrt[3]{40a^2b^{11}}} = \sqrt{\frac{a^5}{8b^9}} =$$

This is the answer if you reduce the fraction first then do the cube root.

Simplify. Assume that all variables are positive.

$$\frac{\sqrt{48x^9y^8}}{\sqrt{2x^6y^3}} = \sqrt{24\times 3y^5}$$

$$= 2\times \sqrt[3]{6}\times \sqrt[3]{9}$$

This is the answer if you reduce the fraction first then do the square root.

You can now finish Hwk #4

Sec 7-2

Due

Page 377

Monday

Problems 14-16, 19, 21, 25, 26, 44, 45