Without actually solving the equation, list all possible numbers that would have to be rejected if they appeared as potential solutions.

$$\frac{3}{6x+13} - \frac{1}{x} = \frac{1}{13x-9}$$

$$\times \neq 0, \frac{9}{13}, \frac{-13}{6}$$

How do you make these denominators look the same?

1.
$$\frac{11}{x+6} \frac{-1}{-1} \cdot \frac{5}{-x-6}$$
 2. $\frac{-1}{-1} \cdot \frac{13}{9-x} \frac{4}{x-9}$ $\frac{11}{x+6} \frac{-5}{x+6} \frac{-13}{x-9} \frac{4}{x-9}$

$$\frac{-13}{X-9} \quad \frac{4}{X-9}$$

Solve.
$$\frac{2}{x^{2} + 11x + 30} - \frac{7}{x^{2} - x - 30} = \frac{8}{3x^{2} - 108} \Rightarrow 3(x^{2} - 36)$$

$$\frac{3(x - 6)}{3(x - 6)} \cdot \frac{2}{(x + 6)(x + 5)} - \frac{7}{(x - 6)(x + 5)} \cdot \frac{3(x + 6)}{3(x + 6)} = \frac{8}{3(x + 6)(x - 6)} \cdot \frac{(x + 5)}{(x + 5)}$$

$$(6(x - 6) - 21(x + 6) = 8(x + 5)$$

$$(6x - 36 - 21x - 126 = 8x + 46)$$

$$-15x - 162 = 8x + 46$$

$$-262 = 23x$$

$$x = \frac{-262}{23}$$

Problems similar to "book" problems

Solve.
$$\frac{2x+8}{x^2-16} + \frac{-1}{(-x-4)} = \frac{5}{x-4}$$

$$\frac{2x+8}{x^2-16} + \frac{-7}{x+4} = \frac{5}{x-4}$$

$$\frac{2\times +8}{(x+4)(x-4)} + \frac{-7}{(x+4)(x-4)} = \frac{5}{x-4}$$

$$\frac{-7}{(x+4)(x-4)} +$$

Solve.
$$\frac{-1}{-1} \cdot \frac{3}{5 - x} - \frac{4x}{x^2 - 25} = \frac{8}{x + 5}$$

$$\frac{-3}{x - 5} - \frac{4x}{x^2 - 25} = \frac{8}{x + 5}$$

$$\frac{(x + 5)}{(x + 5)} \cdot \frac{-3}{x - 5} - \frac{4x}{(x + 5)(x - 5)} = \frac{8}{x + 5} \cdot \frac{(x - 5)}{(x - 5)}$$

$$-3(x + 5) - 4x = 8(x - 5)$$

$$-3(x + 5) - 4x = 8x - 40$$

$$-7x - 15 = 8x - 40$$

$$25 = 15x$$

$$x = \frac{25}{15} = \frac{5}{3}$$

Sally can rake the lawn in 3 hours. Karl can rake the lawn in 2 hours. How long would it take them to rake the lawn if they worked together?

Sally's Rate =
$$\frac{1}{3hrs} = \frac{1}{3} \frac{1}{4hr}$$

Karl's Rate = $\frac{1}{2hrs} = \frac{1}{2} \frac{1}{4hr}$
 $\frac{1}{2hrs} = \frac{1}{2} \frac{1}{4hr}$
 $\frac{1}{3hr} = \frac{1}{2hrs} = \frac{1}{2hrs}$
 $\frac{1}{3hrs} = \frac{1}{3hrs} = \frac{1}{4hrs}$
 $\frac{1}{3hrs} = \frac{1}{2hrs} = \frac{1}{4hrs}$
 $\frac{1}{3hrs} = \frac{1}{2hrs} = \frac{1}{2hrs}$
 $\frac{1}{3hrs} = \frac{1}{3hrs} = \frac{1}{4hrs}$
 $\frac{1}{3hrs} = \frac{1}{4hrs} = \frac{1}{3hrs}$
 $\frac{1}{3hrs} = \frac{1}{3hrs} = \frac{1}{4hrs}$
 $\frac{1}{3hrs} = \frac{1}{4hrs} = \frac{1}{4hrs}$
 $\frac{1}{3hrs} = \frac{1}{4hrs}$

You and I work at the <u>same rate</u>. If it takes each of us 3 hours to finish raking a lawn when working alone, how long would it take if we worked together?

One pump can fill a tank is 1 hour and 40 minutes. Another pump can fill the same tank in 1 hour and 20 minutes. How long would it take them to fill the tank together? & min

1 ST pump =
$$\frac{1}{100} \frac{\text{tank}}{\text{min}}$$
 $t = \frac{1}{100} \frac{\text{tank}}{\text{min}}$
2 nd pump = $\frac{1}{80} \frac{\text{tank}}{\text{min}}$ work together $\frac{1}{100} \cdot t + \frac{1}{80} t = 1$
 $\frac{1}{100} \cdot t + \frac{1}{80} t = 1$

You can now finish Hwk #44

Sec 9-6

Page 524

Problems 5, 25, 41, 46, 49 - 51