1. Is 2i a zero of this polynomial?

$$y = 6x^4 - 7x^3 + 21x^2 - 28x - 12$$

You could do synthetic division with 2i

since synthetic division using 2i leads to a remainder of 0, 2i must be a zero.

1. Is 2i a zero of this polynomial?

$$y = 6x^4 - 7x^3 + 21x^2 - 28x - 12$$

Since 2i is a zero so is -2i. These two zeros came from the factor $x^2 + 4$. Do long division with this factor:

since long division using $x^2 + 4$ leads to a remainder of 0, 2i must be a zero.

1. Is 2i a zero of this polynomial?

$$y = 6x^4 - 7x^3 + 21x^2 - 28x - 12$$

You could use the remainder theorem by finding f(2i).

$$f(zi) = 6(zi)^{4} - 7(zi)^{3} + 2i(zi)^{2} - 28(zi) - 12$$
96 + 56i - 84 - 56i - 12 = 0

Since f(2i) = 0, 2i must be a zero

3. Given x + 3 is a factor of $y = 48x^3 + 154x^2 + 27x - 9$, find the other factors.

$$\frac{-31}{48}$$
 $\frac{48}{154}$ $\frac{27}{-30}$ $\frac{-9}{-194}$ $\frac{-194}{-30}$ $\frac{-3}{5}$ $\frac{-9}{5}$

these numbers represent the quadratic: $48x^2 + 10x - 3$

Factor this quadratic to get the other two factors:

$$8x + 3$$
 $8x + 3$
 $8x + 3$

State the Degree, Leading Coefficient, and the End Behavior

1.
$$y = x^7 - 75x^4 + 3x^2 - 104$$

this is an POSITIVE ODD polynomial which means like a line with a positive slope this graph goes down on the left and up on the right

2.
$$f(x) = -2x^2(x+6)^2(2x+1)(5x-2)^3$$

the leading coefficient is the product of the coefficients of each factor after taking into account the exponents.

this is an NEGATIVE EVEN polynomial which means like a parabola that opens down this graph would go down on both the left and the right.

Give the name
of each
polynomial by:

12.84	Degree
12.07	Degree

$$x^4 + 3x^2 - 28$$
 # of Terms Trinomial

of Terms

Binomial

	Give the name of each polynomial by:	
$9x^2 - 7x + 145$	Degree	Quadratic
1857	# of Terms	Monomial
11x ³	Degree	Cubic