Direct Variation is when there is a Constant Ratio, a line through the origin.

The two Direct Variation Equations are:

$$y = kx$$
 or $k = \frac{y}{x}$

k is

- the Variation Constant
- Slope of the line

1. Is each table below an example of Direct Variation (DV), Inverse Variation(IV), or neither(N)? If yes, state the variation constant and write a direct variation equation.

a)DV, IV or neither? DV

a)bv, iv or richitici:		
Χ	Υ	\\ \frac{\gamma}{\times}
-6	7.5	-1.25
4	-5	-1.25
8	-10	"/
14	-17.5	11

If a variation, $k = \frac{1}{2} \sum_{k=1}^{n} \frac{1}$

If Yes, equation is:

b)DV, IV or neither?

D/D 1, 11 01 110111101 .			
	Χ	Υ	XY
	-8	-15	120
	-2.5	-48	120
	24	5	120
	32	3.75	120

If a variation, k = 120

If Yes, equation is:

$$xy = 120$$
 $y = \frac{120}{x}$

Inverse Variation Inverse Variation is when x and y have a constant product.

k = xy this is called the variation constant.

Three equations for Inverse Variation are

$$xy = k$$

c)DV, IV or neither? Neither

Χ	Υ
-3	-7.2
5	12
8	19.2
18	7.5

If a variation, k =If Yes, equation is: d)DV, IV or neither? Neither

	X	Υ	
	-15	-12	
	-6	-4.8	
<	12	-9.6	
	25	20	

If a variation, k =If Yes, equation is:

Direct Variation Problems can be solved using

One of the Direct Variation Equations or A Proportion

2. This table demonstrates a Direct Variation relationship.

Χ	Υ	$k = \frac{Y}{x} = \frac{-13.5}{-5} = 2.7$
-5	-13.5	
Χ	35.1	y=2.7x
21	56.7	$\mathbf{x} = 13 \qquad \mathbf{y} = 89.1$
33	Υ	-13.5 Y
		$\frac{-13.5}{-5} = \frac{35.1}{x}$

For Direct Variation (ignoring Pos/Neg), as one quantity increases, the other also increases

For Inverse Variation, as one quantity

3. This table demonstrates an Inverse Variation relationship.

Χ	Υ		
-15	-19.2		
X	-36		
7.5	38.4	X =	Y = 12
24	Υ		<u> </u>
	V	= \/ \	xy = 288
		= X Y = Sf	244=288
		(x)(36) = 584	V=17
		x=-8	4-10

Why doesn't it matter whether you say

y varies inversely with x

or

x varies inversely with y

Since the variation constant is found by multiplying x and y you will get the same answer regardless of which way you multiply them.

For a given amount of Force, mass is inversely proportional to acceleration. You accelerated an 8 pound weight 12 ft/sec². = %

1. Write an inverse variation equation. Define your variables.

$$m = mass (\# lbs)$$

 $a = acceleration$

2. Find the acceleration needed to produce the same force on a 15 pound weight.

$$\frac{15 \cdot \alpha = 96}{15}$$
 $\alpha = 6.4 \text{ ft/s}^2$

The number of men it takes to complete a job varies inversely with the number of days it takes to complete the job. At a jobsite, 10 men can do the job in 30 days.

K = (10)(30) = 300

a) Write an Inverse Variation equation. Define your variables.

EQ:

b) How many days it will take if 15 men do the same job?

$$\frac{|5\cdot y| - 300}{|5|}$$
 $y = 20 days$

These points form a direct variation relationship. Find the missing value.

(8,4) & (20,?)
$$\frac{4}{8} = \frac{9}{20} \qquad 9 = 10$$

Find the missing value if these two points are part of an inverse variation relationship.

$$8.4 = 20.4$$
 $32 = 204$
 $32 = 204$

Combined variations.

More than one variation relationship happening at the same time.

Remember the phrase: "Y varies directly with X"

This part of a statement tells you to write

Every variation equation has a variation constant, therefore, all variation equations have k.

If the relationship is **Direct Variation** then the equation is If the relationship is Inverse Variation then the equation is

$$y = kx$$

$$y = \frac{k}{x}$$

Therefore, k is either going to be the leading coefficient

the coefficient of the numerator.

Model each statement with a variation equation using k for the variation constant.

1. Q varies directly with W and inversely with G.

2. R varies directly with the square of T and inversely with the cube of Z.

$$R = \frac{K \cdot T^2}{Z^3}$$

3. N varies directly with A and inversely with the product of P and Q.

$$N = \frac{K \cdot A}{P \cdot Q}$$

R varies jointly with A and the square of E.

Joint Variation means direct variation with more than one variable

R varies jointly with A and the square of E.

Write a variation equation if R = -90 when A = 2 and E = 3. Include the proper value of k

$$-90 = K(2)(3)^{2}$$

$$-90 = 18 k$$

$$K = -5$$

$$R = -5 AE^{2}$$

Find A when R=20 and E=10

$$20 = -5 \text{ A (10)}^2$$

 $\underline{20} = -\frac{500}{-500} \text{ A}$