Write the equation of this function

Starting point: (1,-6) means graph has shifted 1 right and 6 down.

a = Measure on the Image
Corresponding measure on the Parent

This Function:

Parent Function:

$$Q = \frac{1}{3} = 1$$

Write the equation of this function

Starting point: (-2,3) means graph has shifted 2 left and 3 up.

This graph is backwards so there is a negative inside the radical.

 $a = \frac{\text{Measure on the Image}}{\text{Corresponding measure on the Parent}}$

This Function:

Parent Function:

$$\alpha = \frac{1}{1} = 1$$

Write the equation of this function

Starting point: (-3,4) means graph has shifted 3 left and 4 up.

 $a = \frac{\text{Measure on the Image}}{\text{Corresponding measure on the Parent}}$

This Function:

Parent Function:

$$\alpha = \frac{-5}{1} = -5$$

Write the equation of this function

Starting point: (5,2) means graph has shifted 5 right and 2 up.

This graph is backwards so there is a negative inside the radical.

 $a = \frac{\text{Measure on the Image}}{\text{Corresponding measure on the Parent}}$

This Function:

$$\alpha = \frac{-1}{2} = -\frac{1}{2}$$

Write the equation of this function

Starting point: (-4,6) means graph has shifted 4 left and 6 up.

$$a = \frac{\text{Measure on the Image}}{\text{Corresponding measure on the Parent}}$$

This Function:

Parent Function:

$$C_{\lambda} = \frac{-4}{l} = -4$$

Write the equation of this function

Starting point: (11,2) means graph has shifted 11 right and 2 up.

This graph is backwards so there is a negative inside the radical.

 $a = \frac{\text{Measure on the Image}}{\text{Corresponding measure on the Parent}}$

This Function:

Parent Function:

$$C_1 = \frac{-9}{3} = -3$$

Write the equation of this function

Starting point: (5,-1) means graph has shifted 5 right and 1 down.

This graph is backwards so there is a negative inside the radical.

 $a = \frac{\text{Measure on the Image}}{\text{Corresponding measure on the Parent}}$

This Function:

Parent Function:

$$\alpha = \frac{10}{2} = 5$$

Domain and Range of Square Root Functions:

Find the Domain and Range of each.

1. $y = 2\sqrt{x+1} - 3$

1 left and 3 down makes a starting point of (-1, -3)

no negative means this graph moves in the same directions as the Parent Function

Domain: $\times \geq -1$

Range:

3.
$$y = -\sqrt{-(x+4)} - 1$$
 4 left and -1 down makes a starting point of (-4, -1)

The two negatives means this graph is upside down

and backwards.

Domain: $X \leq -4$

Range: $y \leq -1$

5 right and 6 up makes a starting point of (5,6)

this negative makes the graph upside down.

Domain: $\times > 5$

Range: $y \leq 6$

(5,6)

Finding Domain and Range algebraically.

1.
$$y = 2\sqrt{x+1} - 3$$

Domain: $\times + 1 \ge \bigcirc$ radicand can't be negative. Therefore, to find the domain set the radicand ≥ 0 and solve for x.

Range:

to find range find the starting point by plugging in the first value of x the domain indicates.

then plug another value for x according to what the domain indicates and see if y is getting bigger or smaller. -1 is bigger than -3.

2.
$$y = -4\sqrt{x-5} + 6$$

Domain: $x-5 \ge 0$ $(x \ge 5)$

Range:

You can now do Hwk #22

Practice Sheet Sec 7-8

This is the end of Chapter 7!!