$$y = x^2$$
 $y = \sqrt{x}$

Since ()² and $\sqrt{ }$ are inverses why is the graph of $\sqrt{ }$ only half of a sideways parabola.

Graph of the Parent Function:

$$y = \sqrt{x}$$

	_
Χ	У
\Diamond	0

4 2

$$y = \sqrt{x}$$
 Why is the graph of the above only "half a sideways parabola"?

- If it were both halves then it wouldn't be a function.
- Without a sign in front of the radical it means the Principal Square Root (positive root).

What do you think $y = \sqrt{x-3}$ looks like? The parent function shifted 3 units right

What do you think $y = \sqrt{x} + 7$ looks like? The parent function shifted 7 units up

$$y = a\sqrt{x - h} + k$$

h: Horizontal Translation

k: Vertical Translation

a: a>1 Vertical Stretch0<a<1 Vertical Shrinka is neg: x-axis reflection (upside down) The "vertex"

(h,k)

The new starting point or The new origin

What do you think $y = -\sqrt{x}$ looks like?

The parent function upside down

What do you think $y = 3 \sqrt{x}$ looks like?

The parent function 3 times taller

When we graphed parabolas we

- shifted them left/right and up/down
- made them taller and shorter
- made them upside down (x-axis reflection)

What didn't we do?

make them backwards (y-axis reflection)

Why not?

Since a parabola is already symmetric about a vertical line a y-axis reflection won't change it.

Since $y = \sqrt{x}$ isn't symmetric about the y-axis you can make it backwards. How do you do a y-axis reflection?

Graph a backward square root function.

$$y = \sqrt{-x}$$

The shapes of the square root function:

Match the graphs with the equations

1.
$$y = -\sqrt{-x}$$
 C

2.
$$y = \sqrt{x}$$

3.
$$y = -\sqrt{x}$$

4.
$$y = \sqrt{-x}$$
 D

Write the equation of the parent square root function after a y-axis reflection and moving it 3 left.

When you have both a Horizontal Translation and a y-axis reflection you must use PARENTHESES to separate the two transformations

Get a sheet of graph paper.

Graph this square root function

Graph this square root function

Graph this square root function

IST Good PT

Write the equation of this function

