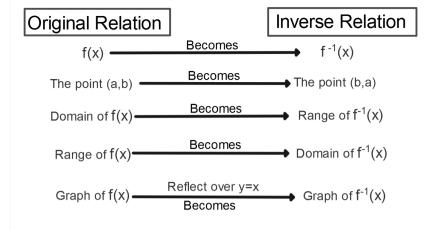
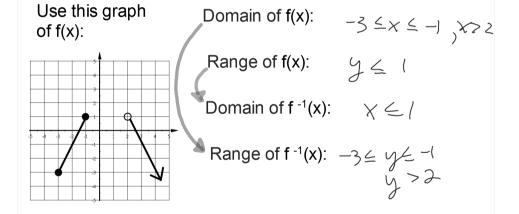
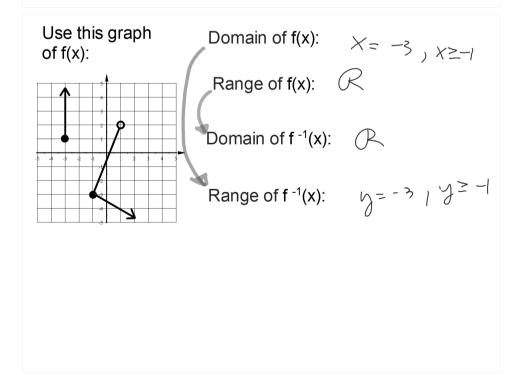
The concept of an Inverse Relation is all about...

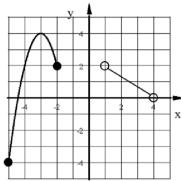
switching X and Y







1. Given the graph of f(x) below state the domain and range of $f^{-1}(x)$



Domain of f⁻¹(x):
$$-4 \le \times \le 4$$

this is the range of the original function

Range of
$$f^{-1}(x)$$
: $-5 \le y \le -2$

this is the domain of the original function

Solve for ${\it K}$

$$G = T(ZK - Q)^2 - H$$

$$K = \frac{1}{\sqrt{G+H}} + Q$$

What I want you to know from Sec 7-7:

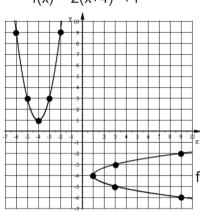
- 1. Given an original relation be able to tell if the inverse is a function or not.
- 2. Know the relationship between the Domain and Range of an original relation and the Domain and Range of the inverse relation.
- 3. Be able to write the equation of the inverse relation.

Solve for $\cal A$

$$\sqrt{\frac{E - CA}{W}} + R = X$$

$$A = \frac{W(X-R)^2 - E}{-C}$$

$$f(x) = 2(x+4)^2 + 1$$



Equations of Inverses

- 1. Switch the variables x and y
- 2. Solve equation for y

step 1:
$$X = 2(y+4)^2 + 1$$

$$^{1}(x)=\pm\sqrt{\frac{x-1}{2}}$$

Find the equation of the inverse for each function and tell if $f^{-1}(x)$ is a function.

3.
$$y = 2(x-3)^4 + 7$$
 $f^{-1}(x) = 4\sqrt{\frac{X-7}{2}}$ + 3

4.
$$y = \frac{-4}{x+7} - 8$$
 $f^{-1}(x) = \frac{-4}{x+8} - 7$

Find the equation of the inverse for each function and tell if $f^{-1}(x)$ is a function.

1.
$$f(x)=2x-3$$
 $f^{-1}(x)=$ $\frac{x+3}{2}=\frac{1}{2}x+\frac{3}{2}$

2.
$$f(x) = (x+5)^3 - 7$$
 $f^{-1}(x) = \sqrt[3]{x+7}$ -5

Find the equation of the inverse.

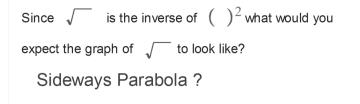
$$y = \frac{(4x+7)^3 - 2}{3} \to x = \frac{(4y+7)^3 - 2}{3}$$

$$\int_{-7}^{-7} (x) = \sqrt[3]{3 \times + 2} - 7$$

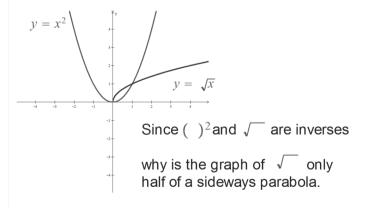
Find the equation of the inverse.

$$y = 2\left(\frac{\sqrt{6x+1}}{11}\right)^{5} - 3 \implies x = 2\left(\frac{\sqrt{6y+1}}{11}\right)^{5} - 3$$

$$f^{-1}(x) = \left(\frac{\sqrt{5(x+1)}}{2}\right)^{5} - 1$$



Graph both
$$y = x^2$$
 and $y = \sqrt{x}$ in a Standard Window.

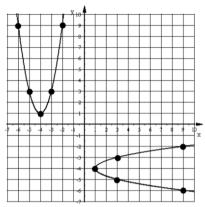


$$y = \sqrt{x}$$

Why is the graph of the above only "half a sideways parabola"?

- If it were both halves then it wouldn't be a function.
- Without a sign in front of the radical it means the Principal Square Root (positive root).

$$f(x) = 2(x+4)^2 + 1$$



$$f^{-1}(x) = \pm \sqrt{\frac{x-1}{2}} - 4$$

Vertex:

(h,k)

$$y = a(x - h)^2 + k$$

Horizontal Translation h:

Vertical Translation

a: a>1 Vertical Stretch 0<a<1 Vertical Shrink a is neg: x-axis reflection (upside down)

Original Function

Inverse Relation

$$f(x) = 2(x+4)^2 + 1$$

$$\longrightarrow$$

$$f^{-1}(x) = \pm \sqrt{\frac{x-1}{2}} - 4$$

Since the inverse of f(x) isn't a function we only use the positive part of the inverse.

Therefore, the graph of a Square Root function will be half of a sideways parabola.

Describe the transformations to the parent function the following equation represents.

$$y = -3(x + 1)^2 - 8$$

- x-axis reflection (upside down)
- Vertical Stretch Factor of 3 (3 times taller)
- Shift 1 unit left
- Shift 8 units down

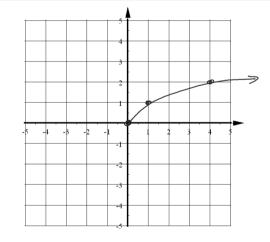
$$y = 8(x - 9)^2 - 4$$

State the Vertex of this parabola.

Graph of the Parent Function:

$$y = \sqrt{x}$$

^	
\bigcirc	0
,	

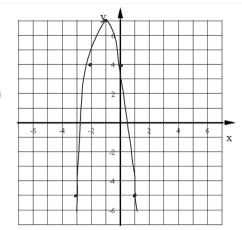


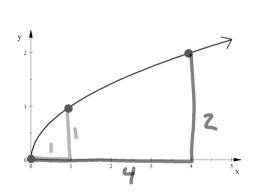
Graph this parabola:

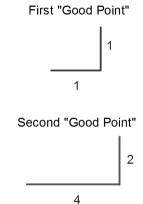
$$y = -3(x+1)^2 + 7$$

Vertex (-1,7)

3x taller upsidedown







What do you think $y = \sqrt{x-3}$ looks like? The parent function shifted 3 units right

What do you think $y = \sqrt{x} + 7$ looks like? The parent function shifted 7 units up