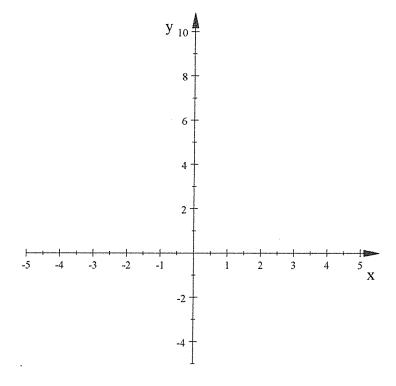
- 1. (a) $y = a \cdot b^x$ is the **general form** for an ___
 - (b) What are the allowed values for

x:

a:

b :

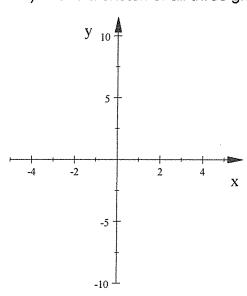
2. b is the base of this function. When b > 1 the equation $y = a \cdot b^x$ models _____


and b is called the _____

3. A) Use a graphing calculator and graph $Y_1 = 2^x$ this is where a = 1 & b = 2. Use the following window:

 $X_{\min} = -5$

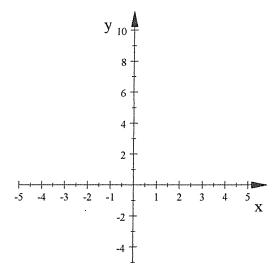
 $X_{\text{max}} = 5 \qquad Y_{\text{min}} = -5 \qquad Y_{\text{max}} = 10$


- B) What is the y-intercept?
- C) In Y_2 and Y_3 graph $y = b^x$ for 2 other values of b bigger than 2.
- D) Make a sketch of all three graphs below labelling each graph with it's equation.

- E) What happens to the graphs as *b* increases?
- F) What point do all three graphs have in common?
- G) All three graphs have the same horizontal asymptote which is _____
- H) The graphs approach this horizontal asymptote as the values of x _____

4. A) Leaving $Y_1 = 2^x$ (remember this is where a = 1 & b = 2) graph in Y_2 and Y_3 , $y = a \cdot 2^x$ for 2 other positive values of a such that 0 < a < 10.

B) Make a sketch of all three graphs labelling each graph with it's equation.


C) Explain what changing the value of a does to the graph.

D) Now graph $y = a \cdot 2^x$ for a negative value of a. What does this do to the graph?

5. A) When the value of b is between 0 and 1, 0 < b < 1,

then the equation $y = a \cdot b^x$ models _____ and b is called the _____

B) Graph $Y_1 = 0.5^x$ (a = 1 & b = 0.5)and sketch the graph below

C) What is the y-intercept?

D) What is the horizontal asymptote?

E) The graph approaches this horizontal asymptote as the values of x _____