-1 and 2 are solutions of the equation below.

$$x^4 - x^3 + 2x^2 - 4x - 8 = 0$$

The other two solutions are imaginary. How could you find the other two?

Divide this polynomial by the factors (x+1) and (x-2). This will leave you a Quadratic which you can then either factor or use Quadratic Formula to find the remaining two solutions.

Polynomial Long Division:

$$\frac{x^2 + 9x + 20}{x + 4} = x + 4 \quad x^2 + 9x + 20 = x + 5$$

$$\frac{x + 5}{x^2 + 9x + 20}$$

$$- x^2 + 4x$$

$$\frac{5x + 20}{5x + 20}$$

Find this quotient.

$$\frac{2x^{3} - 7x^{2} + x - 9}{x + 3} = 2x^{2} - 13x + 40 \qquad R = -129$$

$$2x^{2} - 13x + 40$$

$$2x^{3} - 7x^{2} + x - 9$$

$$- 2x^{3} + 6x^{2}$$

$$- - 13x^{2} + x$$

$$- 13x^{2} - 39x$$

$$+ 40x - 9$$

$$- 40x + 120$$

$$- 129$$

Ways to leave a remainder.

$$\frac{2x^3 - 7x^2 + x - 9}{x + 3} = 2x^2 - 13x + 40 \qquad R = -129$$

$$\frac{2x^3 - 7x^2 + x - 9}{x + 3} = 2x^2 - 13x + 40 - \frac{129}{x + 3}$$

Find this quotient.

$$\frac{2x^{3} + x^{2} - 19x + 10}{2x - 5} = \begin{bmatrix} x^{2} + 3x - 2 \\ x^{2} + 3x - 2 \end{bmatrix}$$

$$\frac{2x^{3} + x^{2} - 19x + 10}{2x^{3} - 5x^{2}}$$

$$\frac{-19x + 10}{6x^{2} - 19x}$$

$$\frac{-19x + 10}{-19x + 10}$$

Find this quotient.

$$\frac{4x^3 + 2x^2 - 15x - 17}{x - 9} = 4x^2 + 38x + 327 \quad R = 2926$$

$$\begin{array}{r}
4x^2 + 38x + 327 \\
(x-9) \overline{4x^3 + 2x^2 - 15x - 17} \\
- 4x^3 - 36x^2 \\
\hline
- 38x^2 - 15x \\
\hline
- 38x^2 - 342x \\
\hline
- 327x - 1743 \\
\hline
- 327x - 2943 \\
\hline
- 2926
\end{array}$$

Find this quotient.

$$\frac{2x^{3} - 7x + 8}{x - 3} = \frac{2x^{2} + 6x + 11}{2x^{2} + 6x + 11} = \frac{2x^{2} + 6x +$$