Finding zeros of a function:

Zeros of a function are x-intecepts of the graph.

One way to find zeros of a function is to FACTOR the function and find the zeros of each factor

Finding zeros of a function with the graphing calculator:

Method 1: Finding ZEROS

$$y = x^4 + 2x^3 - 3x^2 - x + 3$$

Use the option on the graphing calculator to find zeros:

2ND TRACE

2: ZEROS

zeros are: -2.81, -1

How do you find the zeros of a function if you can't factor it?

Use technology

Zeros of a function are the values of x when y = 0.

Method 2: Finding Intersections

$$0 = x^4 + 2x^3 - 3x^2 - x + 3$$

Graph
$$Y_1 = x^4 + 2x^3 - 3x^2 - x + 3$$

and $Y_2 = 0$

use the option on the graphing calculator to find points of intersection.

2ND TRACE
5: intersect

zeros are: -2.81, -1

When finding zeros by graphing you are only able to find the REAL zeros!

3. 2.51

Find the real zeros of this function: $y = x^3 - x^2 - 5x + 3$

What if you don't have a graphing calculator to find zeros?

Check out my blog!

You can now finish Hwk #26

Practice Sheet

Number of extrema of a polynomial:

If the degree of the polynomial is n then there can be up to n-1 extrema.

X - Intercepts -- Can have up to n x-intercepts.
n = degree of polynomial

EVEN Functions may have no x-intecept or multiple x-intercepts. ODD Functions must have at least 1 x-intercept

Y - intercepts -- All polynomials have exactly ONE y-intercept.

X-intercepts of a graph are also.....

.....Solutions to the equation when y=0

find all max, min, and zeros of this function.

$$y = -0.1x^4 + 1.4x^3 - 5.1x^2 + 1.4x + 8$$

ABS max

(.15, 8.1) 2. (6.85, 8.1)

ABS mIN

NONE

Rel Max

NONE

Rel MIN

(3.5, -4.56)

Zeros:

-1.7.5, 8

Every polynomial has exactly Π solutions, where n is the degree of the polynomial.

Some of these solutions may be imaginary so not all solutions can be found by graphing.

Sec 6-4: Solving Polynomial Equations

- Solve by factoring
- Solve by graphing

Solve by factoring (same question as if I asked you to find the zeros of the function!)

Find ALL Complex solutions.

$$3x^{7} + 6x^{5} - 9x^{3} = 0$$

$$3x^{3} \left(x^{4} + 2x^{2} - 3 \right) = 0$$

$$3x^{3} \left(x^{2} - 1 \right) \left(x^{2} + 3 \right) = 0$$

$$3x^{3} \left(x + 1 \right) \left(x^{2} + 3 \right) = 0$$

$$4x^{2} + 3 = 0$$

$$4x$$