Odd Polynomials

Positive Leading Coefficient:

Moves from the third quadrant to the first quadrant.

Like a line with a Positive slope

Negative Leading Coefficient:

Moves from the second quadrant to the fourth quadrant.
Like a line with a Negative slope

END BEHAVIOR

EVEN Functions:

Positive Leading Coefficient: Negative Leading Coefficient:

ODD Functions:

Positive Leading Coefficient: Negative Leading Coefficient:

Even Polynomials

Positive Leading Coefficient:

Moves from the second quadrant to the first quadrant.

Like a parabola with a>0

Negative Leading Coefficient:

Moves from the third quadrant to the fourth quadrant.

Like a parabola with a<0

Given the equation y = (x + 3)(x - 2)

Give four names for -3 and 2:

- Zeros of the function
- Solutions to the equation
- x-intercepts of the graph
- Roots of the function

What does the graph of this look like?

$$y = (x - 3)^{\prime}$$

A line that passes right through the x-axis at +3

+3 is called a single zero.

What does the graph of this look like?

$$y = (x - 4)^3$$

It passes through the x-axis at +4 but flattens out as it passes through.

+4 is called a triple zero.

What does the graph of this look like?

$$y = (x + 2)^2$$

A parabola whose vertex is on the x-axis at -2

-2 is called a double zero.

$$y = (x - 3)$$

+3 is a single zero

zero = 3 with a multiplicity of 1

Our textbook's vocabulary

$$y = (x + 2)^2$$

-2 is a double zero

zero = -2 with a multiplicity of 2

$$y = (x - 4)^3$$

+4 is a triple zero

zero = +4 with a multiplicity of 3

Shapes of Zeros (graphs at x-intercepts)

	Factor	
Single Zeros:	(x+3)	

Possible Shape Zero

		<u> </u>	
-3	or	-3	→

$$(x-1)^2 + 1$$

-3

$$(x + 7)^3$$

Sketch this function using the shapes of the zeros and the end-behavior

 $y = (x+4)^2(x+1)^2(x-3)^3$

Start in Quadrant III finish in Quadrant I

- 4 is a double zero
- 1 is a double zero
- 3 is a triple zero

Sketch a graph of this function:

- 3. Find zeros and what kind
- +1: single zero -6: double zero
- +5: triple zero
- 4. Place dots on the x-axis for the zeros.
- 5. Connect Left End to Right End

$$y = (x - 1)(x + 6)^{2}(x - 5)^{3}$$

Sketch this function using the shapes of the zeros and the end behavior.

$$y = (4 - x)^3(x + 3)^2(x + 1)$$
 Even Neg (4,4)

Sketch a graph of this function:

ODD

$$y = -x^{9}(x - 6)(x + 4)^{9}(x - 9)^{19}$$

Write a possible equation for the function shown in this graph.

Sketch this function using the shapes of the zeros and the end behavior.

