1. Monomial:

A real number, a variable, or the product of a real number and variables.

Give three examples of a monomial:

-12,
$$x^2$$
, 9.3 a^3b^5

a Term

2. Polynomial:

Give two examples of a polynomial:

 $7w. x + 9. 3v^2 - 8v + 1$

A monomial or the sum of monomials

A monomial is a polynomial with just one term

y = (3x + 1)(x - 8) This is called factored form

 $y = 3x^2 - 23x - 8$ This is called expanded form

- 3. a. The exponents of monomials and polynomials must be what kind of numbers?

 Whole Numbers
- b. The coefficients of a polynomial must be what kind of numbers?

Real Numbers

Definition

Polynomial Function

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$
 where n is a nonnegative integer and the coefficients a_n, \ldots, a_0 are real numbers.

- 4. What does a polynomial in standard form look like? Terms are put in descending order using the degree(exponents) with the term having the largest exponent first.
- The leading coefficient of a polynomial is
 The coefficient of the term with the largest exponent.

 If it's in Standard Form it will be the first coefficient.
- 6. The degree of a polynomial is

The largest degree(exponent) of any term after expanding. If it's in Standard Form it will be the first exponent.

standard form of a polynomial. A one-variable polynomial in standard form has no two terms with the same degree, since all like terms have been combined.

# of terms in polynomial	Name by # of terms
1	Monomial
2	Binomial
3	Trinomial

7. Complete these two tables by filling in the blanks.

Degree of Polynomial	Name by Degree
0	Constant
1	Linear
2	Quadratic
3	Cubic

8. Is each of the below a polynomial? If not give a reason.

a)
$$y = \frac{3}{7}x^2 + 3x - 14x^4 + 4$$

Yes

b)
$$y = 4x^{-2} + x^3 - \frac{8}{x}$$

No. There is a neg exponent and the last term has a variable in the denominator which indicates a negative exponent.

c)
$$y = 9\sqrt{x} + 3x^7 - x^{\frac{2}{3}}$$

No, there is a fractional exponent and the first term has a variable under the radical which indicates a fractional exponent.

d)
$$y = 9^x + 10ix^4 - 15$$

No, there is an imaginary number as a coefficient and a variable as an exponent which means that an exponent may not be a whole number.

9. a)
$$9x + 2 - x^2$$

Standard Form: $-x^2 + 9x + 2$

Degree: 2

Leading Coefficient: _1

Name by Degree: Quadratic

Name by # of terms: Trinomial

10. State the degree of each polynomial.

Polynomials in Expanded Form: a) $7x^2 + 12 - 13x^4 + 8x$

a)
$$7x^2 + 12 - 13x^4 + 8x$$

b) $9x^{-1}$

c) 6

Degree:

Degree:

Degree:

b)
$$15+8x^3-3(x+5)=15+8x^3-3x-15=8x^3-3x$$

Standard Form: 8x³ - 3x

Degree: 3

Leading Coefficient: 8

Name by Degree Cubic

Name by # of terms: Binomial

Polynomials in Factored Form:

d)
$$(x+3)(2x-1) = 2x^2 \dots$$

Degree: 2

e)
$$(x-7)^2(x-5)$$

 (x^2) $(x) = x^3$
Degree: $(x-7)^2(x-5)$