Solving equations with rational exponents Take the following steps when solving an equation where the variable is being raised to a rational exponent.

- 1. Isolate the term or quantity that is being raised to the rational exponent on one side of the equation.
- 2. Raise both sides of the equation to the reciprocal power.
- 3. Finish solving for the variable.

EXAMPLE:

Solve.
$$(x+1)^{\frac{3}{4}} + 7 = 34$$

 $-7 - 7$

$$(x+1)^{\frac{4}{3}} = (27)^{\frac{4}{3}} = (\sqrt[3]{27})^4 = (3)^4$$

$$x+1 = 81$$

$$-1 - 1$$

$$sol: x = 80$$

Solve each.

1.
$$(x-3)^{\frac{5}{2}} - 11 = 21$$

2.
$$6(2x-1)^{\frac{1}{5}} + 5 = 17$$
 3. $(x+7)^{\frac{2}{3}} - 6 = 19$

3.
$$(x+7)^{\frac{2}{3}}-6=19$$

Solving radical equations Take the following steps when solving an equation where the variable is in the radicand.

- 1. Isolate the radical on one side of the equation; and the equation is a similar for the side of the equation and the side of the equation of
- 2. Raise both sides of the equation to the power equal to the index of the radical.
- 3. Finish solving for the variable.

EXAMPLE:

Solve.
$$\sqrt{5x+6} - 2 = 11$$

$$+2$$
 +2 add 2 to both sides
 $\sqrt{5x+6} = 13$
 $(\sqrt{5x+6})^2 = (13)^2$ square both sides
 $5x+6=169$ finish solving for x.
 -6 -6
 $5x=163$ $sol: x=\frac{163}{5}=32.6$

Solve each.

4.
$$\sqrt{2x+11}+15=23$$

5.
$$7 \cdot \sqrt[3]{x-8} + 44 = 16$$
 6. $\sqrt{8x+17} - 3 = x$

6.
$$\sqrt{8x+17}-3=x$$