A skydiver jumps from a plane that is at an altitude f 1700 ft. The function $y = -16t^2 + 1700$ gives the jumper's height y, in feet, after t seconds.

a. How long is the jumper in free fall if the parachute opens at 1000 ft?

$$-\frac{700}{-16} = -\frac{16}{-16}t^{2}$$

$$t = \pm 6.61$$
 Only the pos answer makes sense.
$$t = 6.61 \text{ sec}$$

b. How long would it take to reach the ground if the parachute didn't open?

$$0 = -16t^{2} + 1700$$

$$-1700 = -16t^{2} \qquad t = \pm 10.31 \quad \text{Only the pos answer makes sense.}$$

$$1700 = -16t^{2} \qquad t = \pm 10.31 \quad \text{Solve}$$

$$1700 = -16t^{2} \qquad t = \pm 10.31 \quad \text{Solve}$$

$$1700 = -16t^{2} \qquad t = \pm 10.31 \quad \text{Solve}$$

Solving Quadratic Equations:

Factoring and using Square roots are good methods, BUT they only work some of the time

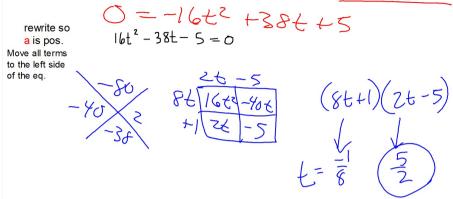
Not everything is factorable

- Factoring
- Square Roots

Only possible if b=0 or eq. is in Vertex Form.

A ball is thrown into the air from an initial height of 5 feet with an initial velocity of 38 ft/sec. The following equation models the height of the ball as a function of time: $h(t) = -16t^2 + 38t + 5$

Find the time it takes the ball to come back down to the ground.



Only the pos answer makes sense in this situation.

Given this equation: $x^2 + x + 2 = 0$

Can you solve this equation by taking square roots?

No, Square roots can't be used if there is a linear term

Given this equation:
$$x^2 + x + 2 = 0$$

Can you solve this equation by factoring?

No, this doesn't factor. There are no integers that multiply to 2 and add to 1

Sec 5-8: The Quadratic Formula Equation must be written in the following form:

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Factoring works SOME of the time.

Using Square Roots works SOME of the time.

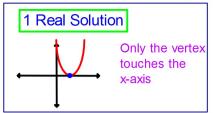
Is there anything that works ALL of the time?

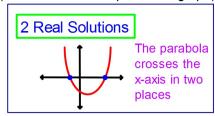
Quadratic Formula

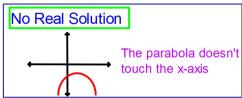
The results of using the Quadratic Fomula represent:

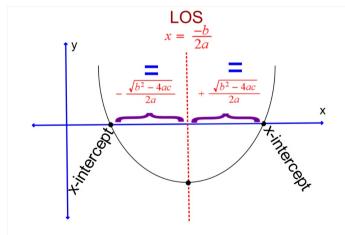
- solutions to the equation
- zeros of the function
- x-intercepts of the graph
- roots of the function

of solutions to a Quadratic Equation. (same as # x-intercepts on the graph)









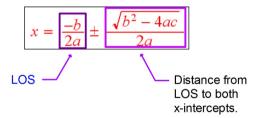
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Can be

Can be written as:

$$x = \frac{-b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$\cos - \frac{1}{2a} + \frac{1}{2a} +$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Can be written as:



Find all real solutions to the nearest hundredth.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$6x^2 + 7x - 20 = 0$$

1st: Find
$$b^2 - 4ac = 529$$

2nd: Rewrite the Quadratic Formula
Using this value in place of
b² - 4ac and replace 2a & -b with their values

$$\frac{-7 \pm \sqrt{529}}{12}$$

3rd: Calculate the two answers

$$x = -2.5, 1.33$$

Find all EXACT Real Solutions.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x^2 - 8x - 2 = 0$$

$$b^2 - 4ac = 72$$

$$X = \frac{8 \pm \sqrt{12}}{2} = \frac{8 \pm 6\sqrt{2}}{2} = 4 \pm 3\sqrt{2}$$

Find all EXACT Real Solutions.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x^2 + 3 = 5x$$

rewrite in Standard Form: $x^2 - 5x + 3 = 0$

$$b^2 - 4ac = 13$$

$$\chi = \frac{5 \pm \sqrt{13}}{2}$$

Since the directions ask for EXACT solutions and $\sqrt{13}$ can't be simplified this is the final answer.