Where are the ends of a graph found?

At the far left and far right

When you are asked to describe the end behavior of a graph you are really asked to describe what the value of Y is doing at the very far left and right of the graph.

Graph all three of these in a Standard Window:

$$Y_1 = 4x - 2$$

 $Y_2 = 0.25x^3 + x + 1$
 $Y_3 = 0.1x^5 - 2x - 3$

At the ends of a graph Y will be doing only one of three things:

- Increasing
- Decreasing
- Polynomials
- remaining Constant

What do the graphs have in common?

What do the equations have in common?	Degree	Lead Coeff
$Y_1 = 4x - 2$	1	4
$Y_2 = 0.25x^3 + x + 1$	3	. 25
$Y_3 = 0.1x^5 - 2x - 3$	5	,
	ODD	Pos

these are all Positive Odd Polynomials

$$Y_1 = 4x - 2$$

$$Y_2 = 0.25x^3 + x + 1$$

$$Y_3 = 0.1x^5 - 2x - 3$$

What would happen if they all had a negative leading coefficient?

Odd Functions: Largest exponent is ODD when expanded
This is called the degree of
the function.

Positive Leading Coefficient:

Moves from the third quadrant to the first quadrant.

Like a line with a Positive slope

Negative Leading Coefficient:

Moves from the second quadrant to the fourth quadrant.

Like a line with a Negative slope

Odd Functions

Positive Leading Coefficient:

Moves from the third quadrant to the first quadrant.

Like a line with a Positive slope

Negative Leading Coefficient:

Moves from the second quadrant to the fourth quadrant.

Like a line with a Negative slope

This is called the END BEHAVIOR of an ODD function

Graph all three of these in a Standard Window:

$$Y_1 = x^2$$

$$Y_2 = 0.5x^4 + 3x - 1$$

$$Y_3 = 0.1x^6 - 5x^2 + x$$

What do the equations have in common?	Degree	Lead Coeff
$Y_1 = x^2$	2	
$Y_2 = 0.5x^4 + 3x - 1$	4	.5
$Y_3 = 0.1x^6 - 5x^2 + x$	b	. (
	even	pos

these are all Pos Even polynomials

$$Y_1 = x^2$$

 $Y_2 = 0.5x^4 + 3x - 1$
 $Y_3 = 0.1x^6 - 5x^2 + x$

What would happen if they all had a negative leading coefficient?

Even Functions: Largest exponent is EVEN when expanded This is called the degree of the function.

Positive Leading Coefficient:

Moves from the second quadrant to the first quadrant.

Like a parabola with a>0

Negative Leading Coefficient:

Moves from the third quadrant to the fourth quadrant.

Like a parabola with a<0

10_T

End-Behavior:

The behavior of the graph on the far left and the far right.

How the value of the function (y) changes as x becomes larger negative LEFT END $x \to -\infty$ and larger positive RIGHT END. $x \to \infty$

END BEHAVIOR

EVEN Functions:

Positive Leading Coefficient:	Negative Leading Coefficient:	
(\nwarrow, \nearrow)	(/ , \) Our Book	

as
$$x \to -\infty$$
, $y \to \infty$ as $x \to -\infty$, $y \to -\infty$ Other Authors & Mathematicians

State the end behavior of each polynomial.

You can now finish Hwk #24:

Page 312

Problems 1-10