
What relationships do you see here?

$$(x + h)^2 = x^2 + bx + c$$

When expanding, b is 2 times h.
And c is always h squared.

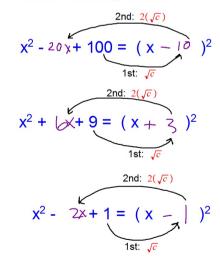
Fill in the missing values.

$$x^{2} - 24x + 144 = (x - 12)^{2}$$

$$x^{2} + 18x + 81 = (x + 9)^{2}$$

$$x^{2} - 10x + 25 = (x - 5)^{2}$$

$$(x + h)^2 = x^2 + bx + c$$


h is found by either finding half of b or the square root of c

The sign of h is alway the same as the sign of b

Relationships amongst the signs

$$(x \circ h)^2 = x^2 \circ bx \circ c$$

Fill in the missing values.

Fill in the missing values.

$$x^2 - 22x \text{ FIZ} = (x - 1)^2$$

1st: b/2

$$x^{2} + 36x + 32 = (x + 18)^{2}$$

$$1st: b/2$$

$$2nd: (b/2)^{2}$$

$$1st: b/2$$

$$2nd: (b/2)^{2}$$

$$x^{2} - 4x + 4 = (x - 3)^{2}$$

$$(x + h)^2 = x^2 + bx + c$$

Relationships between h and c

$$(x - 5)^{2} = x^{2} - 10x + 25$$

$$c = \sqrt{2}$$

$$(x + h)^2 = x^2 + bx + c$$

Relationships between b and c

$$(x-5)^2 = x^2 - 10x + 25$$

$$c = (x-5)^2 = x^2 - 10x + 25$$

$$(x + h)^2 = x^2 + bx + c$$

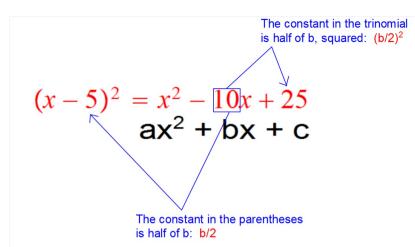
Relationships between h and b

$$(x-5)^{2} = x^{2} - 10x + 25$$

$$b = 2.4$$

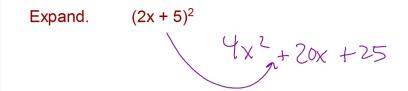
Sec 5-7

Fill in the blanks


1.
$$x^2 + 20x + 100 = (x + 10)^2$$

2.
$$x^2 - 4x + \frac{2 \cdot (b/2)^2}{1 \cdot st: b/2} = (x - 2)^2$$

This is called "Completing the Square."


In general, to complete the square:

$$x^{2} + 16x + 64 = (x + 8)^{2}$$
 $x^{2} + bx + \left(\frac{b}{2}\right)^{2} = (x + \frac{b}{2})^{2}$

Complete the square for each.

1.
$$x^2 - 2x + 1 = (x - 1)^2$$

1. $x^2 - 2x + 1 = (x - 1)^2$
2. $x^2 + 50x + 625 = (x + 25)^2$
1. $x^2 - 3x + 0 = (x - \frac{3}{2})^2$
1. $x^2 - 3x + 0 = (x - \frac{3}{2})^2$

You can now finish Hwk #19. Sec 5-7

Page 285

Problems 7-12, 42, 43, 46, 47

Find the value of k so that the trinomial will factor into $(x - h)^2$. Give the value of h also.

This is called a perfect square trinomial.

$$9x^2 - \frac{kx}{42} + 49 = \frac{(ax - h)^2}{(3x - 7)^2}$$