A company makes and sells syringes. The following equation models their Profit as a function of the # of syringes made per hour: $P(s) = -0.45s^{2} + 360s - 51,500$

1. Find the company's maximum Profit.

$$-0.45(400)^{2} + 366(400) - 51,500 = $20,500$$

Answer this question second

by replacing s with 400.

2. Find the number of syringes that should be made per hour in order to make this maximze Profit.

$$S = \frac{-b}{2a} = \frac{-360}{2(-0.45)} = 400 \text{ Syringes}$$

Answer this question first by finding the Line of Symmetry.

Hwk #14 Sec 5-8

Page 293 Due Tomorrow

Problems 8, 9, 21, 22, 31-33, 57-59

A company makes and sells syringes. The following equation models their Profit as a function of the # of syringes made per hour: $P(s) = -0.45s^2 + 360s - 51,500$

3. How many syringes should they make per hour in order to break-even?

$$0 = -.458^{2} + 3605 - 51,500$$

$$6^{2} - 40c = 36,900$$

$$5 = \frac{-360 \pm \sqrt{36,800}}{-.9}$$

$$5 = 127,614$$

Making either 187 or 614 syringes per hour will allow the company to break even.

Find all Real solutions.

$$2x^{2} + 18 = 12$$

$$-18 - 18$$

$$2x^{2} = -6$$

$$2x^{2} = -6$$

$$2x^{3} = -7$$
No Read So)

Simplify each.

2.
$$\sqrt{-24}$$

$$= \sqrt{-1 \cdot 4 \cdot 6}$$

$$= \sqrt{-1 \cdot 4 \cdot 6}$$

$$= 2i \cdot 6$$

Imaginary Numbers:

$$\sqrt{-1} = i$$

 $m{i}$ is called the imaginary unit.