Bellwork

Alg 2A Wednesday, March 8, 2017

4th hour

Use the Quadratic Formula to solve each equation.

Quadratic Formula: $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Round answers to the nearest hundredth where necessary.

1.
$$4x^2 - 9x - 7 = 0$$

2.
$$8x + 3x^2 - 2 = 0$$

3. A ball is thrown upwards from the top of an 37 foot ladder. The following equation models the height of the ball as a function of time.

$$h(t) = -16x^2 + 120x + 37$$

- a) Find the maximum height of the ball and the time it takes to reach that height.
- b) How much time will it take the ball to reach the ground?

Bellwork Alg 2A Wednesday, March 8, 2017

4th hour

Use the Quadratic Formula to solve each equation.

Quadratic Formula: $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$\pm \sqrt{b^2 - 4ac}$$

Round answers to the nearest hundredth where necessary.

1.
$$4x^2 - 9x - 7 = 0$$

$$X = \frac{9 \pm \sqrt{193}}{8} = 2.86, -0.61$$

$$2. 8x + 3x^2 - 2 = 0$$

$$b^{2}-4ac=388$$
 $0.23,-2.90$
 $X=\frac{-8\pm\sqrt{88}}{96}=0.35,-10.72$

3. A ball is thrown upwards from the top of an 37 foot ladder. The following equation models the height of the ball as a function of time.

$$h(t) = -16x^2 + 120x + 37$$

a) Find the maximum height of the ball and the time it takes to reach that height.

Vertex LOS:
$$t = \frac{-120}{-32} = 3.75 \quad h(3.75) = 262$$

b) How much time will it take the ball to reach the ground?

$$0 = -16x^2 + 120x + 37$$

$$\pm = \frac{-120 \pm \sqrt{16768}}{-32} = -0.30, 7.80 \rightarrow \text{Reaches ground}$$
1 Reaches ground