Use the table function on the graphing calculator to determine the HA. Then state the left and right end-behavior of this function:

$$y = \frac{3x + 7}{2x^2 - 15x - 143}$$

Left end:

as
$$x \to -\infty$$
, $y \to 0^-$

X	Υ
-100	-0.014
-1000	-0.0015
-10000	-0.00015
-100000	-0.000015

zero from below

this shows that as the graph moves farther and farther left (bigger neg)

the graph (y-value) gets closer to

zero but is always below the line

y=0 (still a little negative)

Right end:

as
$$x \to -\infty$$
, $y \to 0^-$ as $x \to \infty$, $y \to 0^+$

y approaches zero from

X	Υ
100	-0.017
1000	0.0015
10000	0.00015
100000	0.000015

this shows that as the graph moves farther and farther right (bigger pos) the graph (y-value) gets closer to zero but is always above the line y=0 (still a little positive)

When the denominator of a rational function is zero the function is undefined.

Because this value of x can never be used this leads to a break in the graph (it's not continuous)

These breaks in the graph are one of two types:

Vertical Asymptotes

Holes

Using the same function. State the behavior on both sides of it's VA at: x=13

$$y = \frac{3x + 7}{2x^2 - 15x - 143}$$

Left side of x=13

as
$$x \to 13^-, y \to -\infty$$

X	Υ	As x gets closer
12.9	-12.42	to 13, from the left, y gets bigger and bigger negative(it
12.99	-124.3	
12.999	-1243	goes down)
12.9999	-12432	

Right side of x=13

as
$$x \to 13^-$$
, $y \to -\infty$ as $x \to 13^+$, $y \to \infty$

X	Υ
13.1	12.45
13.01	124.34
13.001	1243.3
13.0001	12432

As x gets closer to 13, from the right. y gets bigger and bigger positive(it goes up)

Graph the rational function f(x) in a standard window.

$$f(x) = \frac{x+7}{x+1}$$

There is a break in the graph at x = -1

This kind of break in the graph is called a

Vertical Asymptote

as a graph approaches a vertical asymptote it will either increase without bound (go up) or decrease without bound (go down)

Graph the rational function f(x) in a standard window.

$$f(x) = \frac{((x-3)(x+2))}{(x-3)}$$

Why do you think that there isn't a vertical asymptote at

x = 3?

Because the factor that created the point of discontinuity at x=3 cancels.

When simplified the original function becomes f(x) = x+2 which is what the graph of the original looks like

Change the window to the following:

What do you see?

This kind of break in the graph is called a Hole

Why did this graph have a Vertical Asymptote at x = -1

$$f(x) = \frac{x+7}{x+1}$$

x=-1 is a zero of ONLY the denominator

this graph had a hole at x = 3?

$$f(x) = \frac{(x-3)(x+2)}{(x-3)}$$

x=3 is a zero of both the numerator and denominator

Breaks in the graph are caused by zeros of the denominator and are called:

Points of Discontinuity

Holes

or

Vertical Asymptotes

Occur at values of x that are zeros of both the denominator

Occur at values of x that are zeros of

AND

numerator

the denominator ONLY.

Another way to say this is that the Numerator and Denominator have

a factor in common.

 $y = \frac{x^2 - 16}{x^2 + 8x + 16} = \frac{(x+4)(x-4)}{(x+4)(x+4)}$

Why is there a VA at x = -4and not a hole?

> Even though the factors (x+4) are common to the numerator and denominator. when you cancel them there is still (x+4) left in the denominator.

An exception to this rule:

$$y = \frac{x^2 - 16}{x^2 + 8x + 16} = \frac{(x+4)(x-4)}{(x+4)(x+4)}$$
This result is more like
$$y = \frac{x^2 - 16}{x^2 + 8x + 16} = \frac{(x+4)(x-4)}{(x+4)(x+4)}$$
This result is more like
$$y = \frac{x+7}{x+1}$$
Which had a VA

It's less like

$$f(x) = \frac{(x-3)(x+2)}{(x-3)}$$

Because in the case above the (x-3) cancels and it doesn't appear in the denominator anymore.

Properties

Vertical Asymptotes

The rational function $f(x) = \frac{P(x)}{O(x)}$ has a point of discontinuity for each real zero of Q(x).

If P(x) and Q(x) have no common real zeros, then the graph of f(x) has a vertical asymptote at each real zero of Q(x).

If P(x) and Q(x) have a common real zero a, then there is a hole in the graph (or) a vertical asymptote at x = a.

Find any points of dicontinuity and classify them as Vertical Asymptotes or Holes.

1.
$$y = \frac{2x(x+1)(x-6)}{(x-1)(x-6)}$$

1.
$$y = \frac{2x(x+1)(x-6)}{(x-1)(x-6)}$$
 2. $y = \frac{3x^2-6}{x^2-4} = \frac{3(x^2-2)}{(x+2)(x-2)}$

Pts of Discontinuity: 1,6

Pts of Discontinuity: $\chi = -2$, 2

$$VA: \chi = 1$$

$$y = \frac{2x^2}{x^2 + 3}$$

Pts of Discontinuity:

There are no points of discontinuity because the denominator will never be equal to zero (it has no real zeros!)

VA:

Holes:

3.
$$y = \frac{x^2 - x - 12}{x^2 - 16}$$

$$\frac{(x - 1)(x + 3)}{(x + 4)(x - 4)}$$

Pts of Discontinuity: $\chi = \pm 4$

$$VA: \quad \chi = - \Upsilon$$

Holes:
$$\chi = 4$$

4.
$$y = \frac{x^2 + 6x + 9}{x^2 + 5x + 6}$$

$$(x+3)(x+3)$$

Pts of Discontinuity: $\sqrt{-2}$

Holes:
$$\chi = -3$$

You can now finish:

Hwk #5 Sec 9-3

Pages 505

Problems 2, 3, 5, 12, 13, 17, 18,