Does each table represent Direct Variation? If yes, state the variation constant.

1.

|       |            | ٧    |
|-------|------------|------|
| Χ     | Υ          | X    |
| -2.4  | <b>-</b> 9 | 3.75 |
| -1.63 | -5.1       | 3.19 |
| 5.8   | 21.75      |      |
| 12.32 | 46.2       |      |
| 32.8  | 123        |      |

No, it is not Direct Variation because y/x isn't a constant ratio 2.

| Χ    | v      |
|------|--------|
| -8.4 | 68.88  |
| 1.6  | -13.12 |
| 6.2  | -50.84 |
| 12.5 | 102.5  |
| 19   | -155.8 |

No, it is not Direct Variation because the ratio of y/x is negative for only four of the five set of x&y values 3.

|      |       | У     |
|------|-------|-------|
| Χ    | Υ     | X     |
| -4   | -12.5 | 3.125 |
| -1.2 | -3.8  | 3.16  |
| 6    | 19    | 3.167 |
| 15   | 47.2  | 3.14  |
| 26   | 81    | 3.115 |

Since y/x isn't a constant ratio it doesn't seem like Direct Variation. However, if this data was "real-world" data we may consider this Direct Variation because "real-world" is seldom perfect. Therefore, for real data y/x values that are all very close might indicate this is really Direct Variation. The value of the variation constant would probably be the average of the y/x ratios.

1. Use this table to write a Direct Variation equation.

×

| Χ  | Υ     |  |
|----|-------|--|
| 2  | 12.2  |  |
| 9  | 54.9  |  |
| 15 | 91.5  |  |
| 18 | 109.8 |  |
| 23 | 140.3 |  |
|    |       |  |

2. Find the value of x when y = 70

| Use the                 | 70=6-1X   |                                          |
|-------------------------|-----------|------------------------------------------|
| Direct<br>Variation Eq. | x = 11,48 | or get the same answer with a proportion |

3. Find the value of y when x = 51

Use the 
$$y = 6.1(51)$$
 or get the same answer with a proportion

Given the table shows a direct variation relationship, find the value of ?.

To solve Direct Variation situations you can use either equation or you can use a Proportion

| Χ  | Υ    | $\frac{Y}{X}$ |
|----|------|---------------|
| 4  | 9    | 2.29          |
| 10 | 22.5 |               |
| 24 | 54   |               |
| 35 | 2    |               |

$$Y=2.25 \times$$
 $Y=2.25 \times$ 
 $Y=2.25 \times$ 
 $Y=2.25 \times$ 

$$\frac{9}{9} = \frac{?}{35} \longrightarrow ? = 78.75$$

A Direct Variation relationship contains the point (-8,11). Write the equation of this Direct Variation.

$$K = \frac{-8}{\lambda}$$

## A Direct Variation relationship has a variation constant of 4.5

Does this direct variation contain the point (6, 27)?

One way to answer this question is to find the ratio of y/x using this point and see if it matches the variation constant.

Therefore, (6,27) must a part of this Direct Variation relationship.

Another way to answer this equation is to write a direct variation equation using the given constant and see if the given point makes the equation true

since (6,27) makes the variation equation true it must be a part of this Direct Variation relationship.



The amount of water in the tub varies directly with the amount of time the water has running. After 5 minutes there are 12 gallons in the tub.

y = gallons of water x = # of minutes

$$k = \frac{V}{x} = \frac{129}{5m} = 2.4 \text{ gal/min}$$

- 1. Model this situation with a Direct Variation equation. Y= 2.4x
- 2. Find the amount of time it takes to fill a 32 gallon tub. because 32 is a # of gallons you can use the Direct Variation equation and replace y with 32 then solve for x.

$$32 = 2.4x$$
  
=  $13.3$  mn =  $3$ min 20 sec

Or you could use a proportion and get the same answer

## Each of the ordered pairs given are for the same direct variation. Find the missing value.

You could use a proprtion

$$\frac{18}{4} = \frac{45}{x}$$

Or use a Direct Variation Equation

2. (18,6) and (24,y)  

$$k = \frac{Y}{X} = \frac{6}{18} = \frac{1}{3}$$

$$y = \frac{1}{3} \times y = \frac{1}{3} (24)$$

The number of gallons of paintused varies directly with the number of feet of fencing being painted. 6 gallons of paint was used to paint 111 feet of fencing.

a) State the variation constant, include units. ≥ 0.05 gal/ft

b) Write a direct variation equation. Define your variables.

$$\frac{EQ:}{y = 0.05x}$$

$$\frac{Variables}{x = \# \text{ feet of fencing}}$$

$$y = \# \text{ gallons of paint}$$

c) How many gallons of paint will be needed to paint 250 feet of fencing?

Using the equation: 
$$y = 0.05(250) = 12.5$$
 gallons

Using a proportion:  $\frac{6 \text{ sal}}{11177} = \frac{y}{15077}$ 

You would probably buy

this leads to an answer of 13.5 which means 13 gallons of paint.

this problem is an example of when rounding in the middle of a problem then using a rounded number to get an answer is dangerous. The proportion is a "better" more accurate answer since the only rounding ocurred with the final answer.

Hwk #1 Sec 2-3

Page 75

Problems 23, 24, 26, 28-30, 38, 48, 52, 59 a,b

**Due Tomorrow**