Given a parabola has a vertex at (-2.5) and it passes through the point (-4.-3) find three more points then plot and connect all five points to graph the parabola.

Given (-2.5) is the Vertex, the LOS is x=2

Plot the point (-4,-3) and its reflection.

comparing the distance from the vertex to the other point gives us these movements: 2 horizontally and 8 vertically.

The Parent Function has a pt that is also 2 horizontally but it is only 4 vertically. So this parabola is twic as tall as the Parent Function.

The first good point to the right of the vertex on the Parent Function is 1 right and 1 up. On this function it will be twice as tall but upside down: 1 right and 2 down.

What is the equation for the LOS of this quadratic?

$$y = ax^2 + c$$

$$x = 0$$

What is the equation for the LOS of this quadratic?

$$y = ax^2 + bx + c$$

LOS:
$$x = \frac{-b}{2a}$$

Find the equation for the LOS for each quadratic function.

1.
$$v = 2x^2 + 18x - 14$$

1.
$$y = 2x^{2} + 18x - 14$$

 $\chi = \frac{-18}{4} = -4.5$
2. $y = -\frac{1}{2}x^{2} - 24x + 37$
 $\chi = \frac{24}{-1} = 24$

$$2. \ y = -\frac{1}{2}x^2 - 24x + 37$$

$$X = \frac{24}{-1} - (24)$$

$$3. \ y = 8.7x^2 - 20$$

What is the equation for the LOS?

$$y = 4x^2 - 48x + 17$$

vhat can you now find? The Vertex.

Since the Vertex is a point on the LOS the x-coordinate of the Vertex s the same as the LOS. To find the y-coordinate of the Vertex you ust evalute the quadratic equation using the x-coordinate

Vertex

One method to graph a quadratic in Standard Form:

- 1. Find the equation for the LOS and put it on the graph as a dashed line
- 2. Find the coordinates of the Vertex and plot it.
- 3. Find the y-intercept and plot it, if it fits.
- 4. Reflect the y-intercept over the LOS.
- 5. Use a table of values to find more points and reflect them over the LOS

Find the equation of the LOS and coordinates of the Vertex for each quadratic equation. $\frac{36}{2}$

1.
$$y = -4x^2 - 8x + 9$$

$$2. \ y = \frac{1}{4}x^2 + 6x - 1$$

To find the y-coordinate of the vertex you substitute the x-coordinate into the equation for all x's and simplify.

Graph this Quadratic:

$$y = x^2 - 4x - 1$$

Los:
$$x = \frac{4}{2 \cdot 1} = 2$$

Vertex: (2, -5) $(2)^2 - 4(2) - 1 = -$

y - int = -1. Plot this and its reflection

 $y = x^2 - 4x - 1$

Another way to graph a parabola:

Step 1: Find the Vertex

Los:
$$x = \frac{4}{2 \cdot 1} - 2$$

Vertex: (2.-5)

LOS: x = 2

Step 2: Use the Vertical Stretch or Shrink Factor to find the remaining points.

Because the coefficient of the quadratic term is 1 (a=1) this parabola is the same height as the Parent Function

First Good Point:

14 \$

These vertical distances will remain the same.

Plot these points and their reflection over the LOS

Short Hwk Quiz tomorrow over:

- Graph a parabola w/o graphing calc.
- State Eq of LOS given the vertex.
- State Eq of LOS given eq.
- State the coordinates of the Vertex given eq.
- State the y-int given the eq.
- Determine if parabola opens UP/DOWN & if vertex is a MAX/MIN.
- Make a scatter plot & find regression eq that fits data.

You can now finish Hwk #5:

Practice Sheet Sec 5-2