$$v = ax^2 + c$$

This is a Quadratic Function in Standard Form where b=0

- 1. when b=0 LOS is always
- This is the one case where the y-int and the vertex are the same point.
- ^{2.} This means the parabola hasn't shifted either left or right.
- 3. But, it has shifted up/down exactly c units.

If c is Pos it has shifted up

If c is Neg it has shifed down.

a tells us if a parabola opens up or down.

It's also a Vertical Stretch or Shrink Factor.

$y = x^2$ is the Parent Quadratic Function

The first two "good points" to the right of the Vertex for the Parent Function are:

Without using a table of values graph the equation below using at least 5 points. $y = -4x^2$

Since both b and c are zero this parabola hasn't shifted horiz or vert. The vertex is still the origin. Now use the vertical stretch factor (a = -4) to find the two points on one side of the vertex then reflect them over the LOS.

What will $y=0.5x^2$ look like?

Parent

Half as tall as the Parent Function.

This Function

the equation of a Quadrtic is: $y = 2x^2 -$

The vertex of this parabola is (3, - 4)

Graph the rest of this parabola.

Plot the vertex then use the vertical stretch factor (a = 2) to find the two points on one side of the vertex then reflect them over the LOS>

the equation of a Quadrtic is:

$$y = -3x^2 +$$

The vertex of this parabola is (1, 5)

Graph the rest of this parabola.

Plot the vertex then use the vertical stretch factor (a = -3) to find the two points on one side of the vertex then reflect them over the LOS>

You can now finish Hwk#4

Practice Sheet

Sec 5-2

What is the equation for the LOS of this quadratic?

$$y = ax^2 + c$$
 $x = 0$

What is the equation for the LOS of this quadratic?

$$y = ax^2 + bx + c$$

LOS:
$$x = \frac{-b}{2a}$$

Find the equation for the LOS for each quadratic function.

1.
$$y = 2x^2 + 18x - 14$$

2.
$$y = -\frac{1}{2}x^2 - 24x + 37$$

$$\chi = \frac{-18}{2(2)} = -4.5$$

$$X = \frac{24}{2(-\frac{1}{2})} - \frac{24}{-1} = -24$$

3.
$$y = 8.7x^2 - 20$$

$$\chi = \frac{0}{2(8.7)} = 0$$

What is the equation for the LOS?

$$y = -3x^2 + 12x - 22$$

 $\chi = \frac{-12}{2(-3)} = \frac{-12}{-6} = 2$

what can you now find?

The Vertex. Since the Vertex is a point on the LOS the x-coordinate of the Vertex is the same as the LOS. To find the y-coordinate of the Vertex you just evalute the quadratic equation using the x-coordinate

$$-3(2)^{2}+/2(2)-22$$