How many points are required to define a parabola? 3 noncollinear points

Find the equation of the parabola that passes through the given points:

Enter this data into L₁ and L₂ then do a Quadratic Regression:

$$\frac{(-4,-3), (-2,5), (1,8)}{\frac{1}{-4} - \frac{1}{-3}} \qquad y = -.6 \times^{2} + .4 \times + \delta, 7$$

To find a Quadratic Equation for the four points below:

Would it be better to

1. use a graphing calculator and do a Quadratic Regression

or

2. use a graphing caclulator, a system of equations, and matrices?

You can only use 3 points to find the equation of a quadratic using matrices so you'd have to elimnate of the points.... which one and why that one?

You can use all the points when doing a quadratic regression, therefore, this is a better method when you have more than three data points to use.

Another way to find the equation of the quadratic that passes through

$$(-4,-3)$$
, $(-2,5)$, $(1,8)$

Create a system of equations

$$y = ax^2 + bx + c$$

(-z,5)

$$-3 = 16a - 4b + c$$

 $5 = 4q - 2b + c$
 $8 = a + b + c$

$$a = -0.6$$

 $b = 0.4$
 $c = 8.2$

What if you don't have a graphing calculator at home to do a scatter plot?

- 1. Use paper and pencil
- 2. Stay after school and use on in my classroom
- 3. Use spreadsheet software such as Excel
- 4. Use the internet

What if you don't have a graphing calculator at home to find a quadratic regression equation?

- 1. Stay after school and use one in my classroom
- 2. Use spreadsheet software such as Excel
- 3. Use the internet

The graph of the function $f(x) = -2x^2 + c$ contains the point (-3,-7). Find the value of c.

$$-7 = -3(-3)^{2} + (-7 = -2(9) + (-7 = -18 + (-7 = -18)^{2} + (-7 = -18)^$$

$$y = ax^2 + bx + c$$

Without actually graphing a parabola how can you tell it opens up or opens down?

When a<0 the parabola opens DOWN

When a>0 the parabola opens UP

You can now finish Hwk #3. Sec 5-1

Page 241

Problems 5, 8, 16, 21, 22, 34, 38

Due Tomorrow

How can you tell if a Quadratic has a Maximum or a Minimum without graphing?

If a parabola opens UP the vertex is a Minimum

If the parabola opens DOWN the vertex is a Maximum

Does each Quadratic have a Maximum or a Minimum?

1.
$$y = 315x^2 + 3x + 0.57$$
Opens Down so the vertex is a MAX

3.
$$f(x) = -25x + 3.27x^2 - 178$$

Opens UP so the vertex is a MIN

2.
$$f(x) = 0.0912x^2 - 68x - 13$$

Opens UP so the vertex is a MIN

4.
$$y = (3x+1)(7-x)$$

If you expand this you'll get -3x² so a will be neg

Opens Down so the vertex is a MAX