Factor Completely.

$$-p^2 + 14p - 48$$

$$-1 \left( p^{2} - 14p + 48 \right)$$

$$- \left( p - 6 \right) \left( p - 6 \right)$$

Whenever a is negative, factor out the GCF with a negative.

If there doesn't appear to be a GCF just factor out -1.

Factor Completely.



Factor Completely.

$$-18x^2 - 21x + 60 = -3(6 \times^2 + 7 \times -20)$$



Factor Completely.

$$n^6 + 6n^3 - 40$$





these two terms must always have the same variable part as the middle term in the original problem.

M

$$(N^3+10)(N^3-4)$$

#### Expand each

1. (x - 6)(x + 6)



situation

2. (m - 3)(m + 3)

$$m^2-9$$

# Expand.

3. 
$$(2w + 5)(2w - 5)$$

4. 
$$(15g - 8)(15g + 8)$$

$$= (2n)^2 - (5)^2$$

$$-(150)^2-(8)^2$$

Factors like these: (a+b) and (a-b) are called conjugates

Whenever you multiply these together the middle two terms cancel and all you have left are  $a^2 - b^2$ 

### Fill in the parentheses:

$$a^2 - 100 = (a + b)(a - b)$$

$$a^2 - 169 = (q + 13)(q - 13)$$

$$9c^2 - 49 = (x_1)(x_2)$$

#### a<sup>2</sup> - b<sup>2</sup> is called the difference of PERFECT SQUARES

This ALWAYS factors the same way:

$$a^2 - b^2 = (a + b)(a - b)$$

116 = 4

Factor completely.

Factor completely.

1. 
$$e^2 - 81$$

2. 
$$b^2 - 289$$

1289 = 17

After removing a GCF, if there is one, .....

If you still have a binomial you should look for the following.....

$$(a + b)(a - b) = (a \pm b)$$

## Factor completely.

$$\frac{45P^2 - 80}{5} = 5(9p^2 - 16)$$

$$= 5(3p \pm 4)$$

You can now finish Hwk #10 Sec 5-4

Page 264

Problems 37, 39, 42, 45, 52, 53, 65

Factor completely.

$$24w^3 - 294w$$

$$= 6w(4w^{2}-49)$$

$$= 6w(2w + 7)$$