The y-intercept of any graph is found by replacing x with zero and finding what y=.

For a Quadratic in Standard Form the y-intercept is

$$y = ax^2 + bx + c$$
 ALWAYS c

The x-intercept of any graph is found by

replacing y with zero and solving for x.

For a Quadratic in Standard Form the x-intercept(s) is/are

The solutions to this equation $0 = ax^2 + bx + c$

Solutions to this equation can be found using one or more of the following methods:

- a. Factoring
- b. Graphing
- c. Square Roots
- d. Completing the Square
- e. Quadratic Formula

State the y-intercept for each quadratic.

1.
$$y = -3x^2 - 8x + 0.7$$

2.
$$y = 7x^2 + 2x$$

1.
$$y = -3x^2 - 8x + 0.7$$
 2. $y = 7x^2 + 2x$ $y = 7x^2 + 2x$

3.
$$f(x) = 2(x - 3)^2 - 1$$

You can now do Hwk #2 Practice 1/2 Sheet

Due Tomorrow

Use the graphing calculator to make a scatter plot of this data.

Sketch what you see on the screen.

Χ	Υ
-7	-164
3	71
15	353
26	611
31	728

Find a Linear Regression equation. Round to the nearest hundredth.

Use this equation to predict the value of y when x = 125.

Use the graphing calculator to make a scatter plot of this data.

Sketch what you see on the screen.

Χ	Υ
-3	1.7
4	2.6
12	15.9
23	54
32	103.5

Find a Quadratic Regression equation. Round to the nearest hundredth.

Use this equation to predict the value of y when
$$x = 50$$
.
 $y = 253.44$ when $x = 50$

$$y = 253.44$$
 when $x = 50$