ALG 2A
BELLWORK
Thursday,
FEBRUARY 2,
2017

1. The table shows data about the wavelength (meters) and the wave speed (m/s) of deep water ocean waves.

Wavelength	Wave Speed				
3	6				
5	16				
7	31				
8	40				

a. Make a scatter plot using the graphing calculator. Sketch what you see on the screen.

- b. Find a linear regression equation and graph it along with the scatter plot. Does this line appear to be a good fit?
- c. Find a quadratic regression equation and graph it along with the scatter plot and the linear regression equation. Which equation appears to be a better fit?
- d. Use the equation to predict the wave speed if the wavelength is 12 meters.

2. Make a scatter plot of this data.

Speed (x) mph	30	40	50	60	70
Stopping distance (1') ft	25	55	105	188	300

- a. Does this data appear to require a linear regression or a quadratic regression?
- b. Find the appropriate equation and use it to find the stopping distance for a speed of 75 mph.

3. Make a scatter plot of the data below. Sketch the scatter plot, labeling the axes.

Years since 1988	0	2	4	6	8	10
Avg House Price (thousands of dollars)	165	154.5	124.5	115	128	165

a) Find a regression equation to model this data. Round to the nearest hundredth.

EQ:

- b) Find the average price of a house in 1985. Round to the nearest dollar.
- c) Find the average price of a house in 2000. Round to the nearest dollar.

ALG 2A Bellwork, Thursday February 2, 1. The table shows data about the wavelength (meters) and the wave speed (m/s) of deep water ocean waves.

Wavelength	Wave Speed
3	6
5	16
7	31
8	40

1. Make a scatter plot using the graphing calculator. Sketch what you see on the screen.

Find a linear regression equation and graph it along with the scatter plot. Does this line appear to be a good fit?

it looks ok, it comes close to all pts. 4 = 6.80x -15.83

3. Find a quadratic regression equation and graph it along with the scatter plot and the linear regression equation. Which equation appears to be a better fit? Y= 059 x2 + 034x - 033

Use the equation to predict the wave speed if the wavelength is 12 meters.

quadratic 15 a better fit since it passes through all

four points

2 Make a scatter plot of this data.

Speed (x) mph	30	40	50	60	70
Stopping distance (v) ft	25	55	105	188	300

a. Does this data appear to require a linear regression or a quadratic regression?

Quad regression

b. Find the appropriate equation and use it to find the stopping distance for a speed of 75 mph.

3 Make a scatter plot of the data below. Sketch the scatter plot, labeling the axes.

Years since 1988	0	2	4	6	8	10
Avg House Price (thousands of dollars)	165	154.5	124.5	115	128	165

a) Find a regression equation to model this data. Round to the nearest hundredth.

EQ:
$$y = 1.83 \times^2 - 19.55 \times + 172.73$$

b) Find the average price of a house in 1985. Round to the nearest dollar.

$$x = -3$$
 \Rightarrow 247, 850 c) Find the average price of a house in 2000. Round to the nearest dollar.

