From Test 1 possible.

1. State the solution to each compound inequality. Give answers as a single statement, if

- a) W < 8
- AND
- W > 9
- b) $A \ge -9$ OR
- $A \leq 12$
- c) E > 6 OR E > 10

- d) B > 0
- AND
- e) M < 6 AND

- B < 2

- M < 20
- 2. Solve each equation for W. State the restrictions on the variables, if any.
- a) A(W+G)-K=M b) $\frac{EW-A}{T}+M=C$ c) MW-RC=HW+AN d) $\frac{H-C}{W}+R=X$
- 3. Use the following functions: $f(x) = x^2 3x$ $g(x) = \frac{5x}{x+1}$ h(x) = x+4

- a) Find f(h(x)). Simplify. b) Find g(h(x)). Simplify. c) Find f(h(2))
- 4. Find the Domain and Range of the graph shown below.

For 5 to 9 solve each.

5.
$$4x + 6(x - 9) + 12 < 7 + 5(2x - 9) + 3$$
 6. $|2x - 1| - 5 = 44$

6.
$$|2x-1|-5=44$$

7.
$$|x + 7.6| + 11 > 40$$

8.
$$|2x + 3| - 4.4 \le 11$$

8.
$$|2x+3|-4.4 \le 11$$
 9. $-19 \le 2x+7 \le 32$

Chapter 3 and Sec 4-7

For 1 to 5 solve each system of equations. State each solution as an ordered pair or triple. Use each of the following methods at least once each: Matrices, Elimination, and Substitution. When using matrices write down both matrices, A & B. Write No Solution or Many Solutions when necessary.

$$\frac{1}{2} = \frac{2}{2} = \frac{3}{2}$$

$$2x + 4y = 12$$

$$7A + 6B = -36$$

$$2P + 6Q = 8$$

$$3x + 6y = -24$$

$$3A - 4B = -23$$

$$2P + 6Q = 8$$

$$y = 2x - 3$$
 $2x + 4y = 12$ $7A + 6B = -36$ $2P + 6Q = 8$ $4x - 5y + 2z = 26$ $4x - 5y = -15$ $3x + 6y = -24$ $3A - 4B = -22$ $5P + 15Q = 20$ $-x + 3y - 6z = -20$

$$7x + y = 11$$

6. Without actually solving the system of equations state the number of solutions: One, None, or Many

a.
$$y = 4x - 9$$

a.
$$y = 4x - 9$$

 $2x + 8y = 24$
b. $y = -\frac{3}{2}x + 5$
 $6x + 4y = 20$
c. $y = 10$
 $10x + 2y = 14$
d. $y = 2x + 1$
 $y + 3 = 2(x - 2)$

c.
$$y = 10$$

d.
$$y = 2x + 1$$

$$2x + 8y = 24$$

$$6x + 4y = 20$$

$$10x + 2y = 14$$

$$y+3=2(x-2)$$

- 7. There are 128 students in a large lecture hall. The number of females is seven less than twice the number of males. Write and solve a system of equations to find the number or females and males in the lecture hall. State the method used to solve the system of equations.
- 8. At 7-11 I bought 2 Gulps and 5 Big Gulps and spent \$8.40. The next day I bought 3 Gulps and 8 Big Gulps and spent \$13.23. The prices for were the same both days. Write and solve a system of equations to find the cost of a Gulp and the cost of a Big Gulp. State the method used to solve the system of equations.

Chapter 5

1. Write the equation of this parabola in Vertex Form: $y = a(x-h)^2 + k$

Problems 2 and 3: For each quadratic answer the following:

- a) State the equation for the line of symmetry
- b) State the coordinates of the vertex
- c) State the y-intercept
- d) Tell if the parabola has a maximum or a minimum.

2.
$$y = -2x^2 - 16x + 13$$

3.
$$y = 3(x-1)^2 + 6$$

4. Find ALL EXACT Complex solutions, both real and imaginary, using factoring:

a)
$$6x^2 - 15x = 0$$

b)
$$2x^2 + 6x - 20 = 0$$

c)
$$2x^2 + x - 10 = 0$$

d)
$$2x^3 + 7x^2 - 18x - 63 = 0$$

5. Find ALL EXACT Complex solutions, both real and imaginary, using square roots:

a)
$$5 + 3x^2 + 57 = 8$$

b)
$$(x+3)^2 + 24 = 8$$

6. Find all Complex solutions, both real and imaginary, using the quadratic formula. Give all real solutions rounded to the nearest hundredth and simplify all imaginary solutions.

a)
$$4x^2 + 20x - 1 = 0$$

b)
$$x^2 - 4x + 29 = 0$$

On the final exam you will be given a group of quadratic equations to solve using any method you wish but you'll be required to use each method a given number of times.

- 7. An object is shot into the air from the top of a 30 foot building. The following equation models the height of the object as a function of time. $h(t) = -16t^2 + 200t + 30$
- a) Find the time to reach it's maximum height.
- b) Find the maximum height.
- c) Find the time it takes for the object to return to the ground.
- d) Find the time it takes for the object to reach a height of 100 feet.
- 8. Find each product:
- a) (2+4i)(5-3i)
- b) (6+7i)(6-7i)

Chapter 6

1. Find all Complex solutions, real and imaginary, using factoring.

a)
$$2x^5 - 10x^3 - 72x = 0$$

a)
$$2x^5 - 10x^3 - 72x = 0$$
 b) $3x^3 - 2x^2 + 18x - 12 = 0$ c) $5x^5 - 80x = 0$

c)
$$5x^5 - 80x = 0$$

2. State the Degree(actual NUMBER) and Leading Coefficient (actual NUMBER) of each polynomial.

a)
$$5x^3 - 3x^2 + x^5 - 9x + 12$$

b)
$$-10x^2(5x+6)^2(2x-1)^3(x+3)$$

3. State the end behavior of each polynomial.

a)
$$y = 5x^4 + 6x^3 - 7x + 1$$

b)
$$y = -x(x+6)^2(x-7)^2(x+4)$$

c)
$$y = -2x^5 + 8x^4 - 9x^2 + 10x$$

a)
$$y = 5x^4 + 6x^3 - 7x + 1$$

b) $y = -x(x+6)^2(x-7)^2(x+4)$
c) $y = -2x^5 + 8x^4 - 9x^2 + 10x$
d) $y = x^3(x+3)^2(x+7)(x-1)$

4. Write the equation of the polynomial shown in the graph.

5. Find each quotient. You can leave remainders any way you wish.

a)
$$\frac{3x^4 - 8x^3 + 7x^2 + 4x - 9}{x - 2}$$

b)
$$\frac{8x^3 + 22x^2 - 25x + 3}{4x - 3}$$

6. Use the fact 3 and -4 are zeros to factor this polynomial completely. $y = 6x^4 + 5x^3 - 88x^2 - 3x + 180$

7. Use this polynomial: $y = x^4 + 7x^3 + 14x^2 + 28x + 40$ Graph to find find real solutions then find the imaginary solutions. State ALL solutions.

Hon Alg 2 Final Exam Review

ANSWERS Fall 2016

- Test 1 1. a) No Sol b) All Real #'s c) E > 6 d) 0 < B < 2 e) $m \le 6$

- 2. a) $W = \frac{M+K}{A} G$ or $\frac{M+K-AG}{A}$ $A \neq 0$ b) $W = \frac{T(C-M)+A}{E}$ $T \neq 0$ and $E \neq 0$ c) $W = \frac{AN+RC}{M-H}$ $M-H \neq 0$ OR $W = \frac{-RC-AN}{H-M}$ $H-M \neq 0$ d) $W = \frac{H-C}{X-R}$ $X-R \neq 0$ and $W \neq 0$ 3. a) $x^2 + 5x + 4$ b) $\frac{5x+20}{x+5}$ c) 18

4. Domain: $x \ge -4$ Range: $y \le -1, y \ge 1$

- 5. All Real Numbers 6. x = -24,25 7. x < -36.6 or x > 21.4

- 8. $-9.2 \le x \le 6.2$ 9. $-3 \le x \le 12.5$

Chapter 3 and Sec 4-7

- 1.(5,7)

- 2. No Solution 3. (-6,1) 4. Many Solutions 5. (2,-3,1.5)

- 6. a. 1 Sol b. Many Sol c. 1 Sol d. No Sol

7. EQ's:
$$F + M = 128$$

&
$$F = 2M$$

7. EQ's: F + M = 128 & F = 2M - 7 83 females and 45 males

8. EQ's:
$$2G + 5BG = 8.40$$

$$3G + 8BG = 13.23$$

Chapter 5

1.
$$y = -3(x+4)^2 + 10$$

- 2. a) LOS: x = -4 b) Vertex (-4,45) c) y int = 13 d) Max

3. a) LOS:
$$x = 1$$
 b) Vertex $(1,6)$ c) $y - int = 9$ d) Min

4. a)
$$x = \frac{5}{2}, 0$$
 b) $x = 2, -5$ c) $x = 2, -\frac{5}{2}$ d) $x = \pm 3, -\frac{7}{2}$

b)
$$x = 2, -3$$

c)
$$x = 2, -\frac{5}{2}$$

d)
$$x = \pm 3, -\frac{7}{2}$$

5. a)
$$x = \pm 3i\sqrt{2}$$
 b) $x = -3 \pm 4i$

b)
$$x = -3 \pm 4$$

6. a)
$$x = -5.05, 0.05$$
 b) $x = 2 \pm 5i$

$$\int X = 2 \pm 3i$$

7. a) 6.25 sec b) 655 ft c) 12.65 sec d) 0.36 and 12.14 sec

8. a)
$$22 + 14i$$
 b) 85

Chapter 6

1. a)
$$x = 0, \pm 3, \pm 2i$$
 b) $x = \pm i\sqrt{6}, \frac{2}{3}$ c) $x = 0, \pm 2, \pm 2i$

b)
$$x = \pm i \sqrt{6}$$
,

c)
$$x = 0, \pm 2, \pm 2i$$

3. a)
$$\fiveresistence \fiveresistence \fiver$$

4.
$$y = -x^2(x+6)^2(x+2)(x-3)^3(x-7)$$

5. a)
$$3x^3$$

5. a)
$$3x^3 - 2x^2 + 3x + 10$$
 $R = 11$ b) $2x^2 + 7x - 1$

$$R = 11$$

$$2x^2 + 7x - 1$$

6.
$$(x-3)(x+4)(2x+3)(3x-5)$$
 7. $x = \pm 2i, -2, -5$

7.
$$x = \pm 2i, -2, -5$$