The relationship between the two sets of data on your sheet is an example of DIRECT VARIATION

When two quantities have a CONSTANT RATIO

Graph of Direct Variation is always a Line that passes through the Origin

Two equations for Direct Variation are:
$$\frac{y}{x} = k$$
and
$$y = kx$$

Does each graph represent a Direct Variation relationship?

doesn't NO pass through the origin

In these Direct Variation Equations:

$$\frac{y}{x} = k$$
and $y = kx$

What does the letter k represent?

- The Variation Constant
- The slope of the line.

For Direct Variation, ignoring Pos or Neg

As one quantity increase the other quantity also increases

Does each table of values represent a Direct Variation relationship?

1. No

		Y		
Χ	Υ	X		
6	28.5	4.75	Since the 3rd ratio	
11	52.25	4.75	is not the same as the first two we don't have a constan	
19	89	4.68		
26	119.6			
42	201.6		ratio.	

Χ	Υ	
4	5.4	> 1
14	18.9	> 1
22	21.6	< 1

36.45

2. No

34

Just by noticing that the first two rows give a # >1 and the third row is a #<1 it becomes obvious that we don't have a constant ratio.

Direct Variation Equations:

$$\frac{y}{x} = k$$
 or $y = kx$

Is each equation direct variation? If yes, find the variation constant.

1.
$$4x + 2y = 10$$

1.
$$4x + 2y = 10$$
 2. $6 + 7y = 5 - 3x + 1$

$$y = 10 - 4x$$

$$y = 5 - 2x$$

$$y = -3x$$

$$y = -3x$$

$$x = -3$$
Since b isn't zero
$$x = -3$$

$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$

$$x = -3$$

$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x = -3$$

$$x = -3$$

$$x = -3$$
Since this is
$$x = -3$$

$$x =$$