Sec 6-4: Solving Polynomial Equations

- Solve by factoring
- Solve by graphing

You can solve using graphing by:

- 1. Graphing the two sides separately and find points of intersection.
- 2. Moving all terms to one side and finding the x-intercepts(zeros) by:
 - a. 2nd TRACE Option 2: zero
 - b. Graphing the eq in Y₁ and Y₂=0 and finding points of intersection.

How do you find solutions if you can't factor a polynomial?

Solve by graphing

But, this will only give you real solutions.

Find all real solutions by graphing.

$$3x^2 - 3x + 2 = x^3 - 2x^2 + 3$$

Find all real solutions by graphing.

$$x^{4} - 3x = 2x^{2} - 2.4x - 0.28$$

$$X = -1.11, -.65, .24, (.51)$$

How does the following factor?

$$\sqrt{4x^2} - \sqrt{25} = (2x + 5)(2x - 5)$$

difference of perfect squares always factors:

$$a^2 - b^2 = (a + b)(a - b)$$

You can now finish Hwk #28: Sec 6-4

Page 330 Due tomorrow

Problems: 23, 24, 29, 30, 33, 36

Is there a way to factor the sum of perfect squares?

$$x^2 + 9$$

If two numbers multiply to a positive they would have the same sign, and two numbers with the same sign don't add to zero!

what are these numbers?

Perfect Cubes

Factor:

2.
$$8m^3 - 125$$
 $(2m)^3 - (5)^3$
 $A = 2m$
 $b=5$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

= $(2m - 5)(4m^2 + 10m + 25)$

Factoring the difference of perfect cubes:

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Factor the following:

1.
$$x^{3}-64 = (x-4)(x^{2}+4x+16)$$

 $a=x$
 $b=4$