

Number of extrema of a polynomial:

If the degree of the polynomial is n then there can be up to n-1 extrema.

Polynomials

X - Intercepts -- Can have up to n x-intercepts.

n = degree of polynomial

EVEN Functions may have no x-intecept or multiple x-intercepts. ODD Functions must have at least 1 x-intercept

x-intercepts is the same as the # of REAL zeros

ALL Functions

Y - intercepts -- All polynomials have at most 1 y-intercept.

Every polynomial has exactly \bigcap solutions, where n is the degree of the polynomial.

Some of these solutions may be imaginary so not all solutions can be found by graphing.

X-intercepts of a graph are also.....

.....Solutions to the equation when y=0

Sec 6-4: Solving Polynomial Equations

Solve by factoring

Solve by graphing

Solve by factoring (same question as if I asked you to find the zeros of the function!)

Find ALL Complex solutions.

$$3x^{7} + 6x^{5} - 9x^{3} = 0$$

$$3x^{3}(x^{4} + 2x^{2} - 3)$$

$$3x^{3}(x^{2} + 3)(x^{2} - 1)$$

$$3x^{3}(x^{2} + 3)(x^{2} - 1)$$

$$4 = 0$$
This is a triple zero, therefore, we've found all seven solutions.

Find ALL Complex solutions.

$$2x^{3} - 3x^{2} + 10x - 15 = 0$$

$$2x - 3$$

$$x^{2} - 3x^{2} + 5 + 10x - 15$$

$$2x - 3 - 3x^{2} + 5 + 10x - 15$$

$$2x - 3 - 3x^{2} + 5 + 10x - 15$$

Solve. $x^3 + 3x^2 - 4x - 12 = 0$

How would you factor a polynomial with four terms?

$$\begin{array}{c|c} X & +3 \\ \hline X^2 & X^3 & +3x^2 \\ \hline -4 & -4x & -12 \end{array} \qquad \begin{array}{c} (\chi + 3)(\chi^2 - 4) = 0 \\ (\chi + 2)(\chi + 2) \\ \chi = -3, \pm 2 \end{array}$$

Find ALL Complex solutions.

$$2x^{5} - 72x = 0$$

$$2 \times (x^{4} - 36) = 0$$

$$2 \times (x^{2} + 6)(x^{2} - 6) = 0$$

$$\times = 0, \pm i\sqrt{6}, \pm \sqrt{6}$$

Find ALL Complex solutions.

$$x^{5} + 9x^{3} - 36x = 0$$

$$\times (x^{4} + 9x^{2} - 36) = 0$$

$$\times (x^{2} + 12)(x^{2} - 3) = 0$$

$$\times (x^{2} + 12)(x^{3} + \sqrt{3}) = 0$$

$$\times (x^{3} + 12)(x^{3} + \sqrt{3}) = 0$$