Together, Maximums and Minimums are called EXTREMA

Absolute Max: None

Absolute Min: None

Find the coordinates of all Absolute and Relative Extrema for the function below. Round to the nearest hundredth.

$$y = x^3 - x^2 - 4x + 3$$

Absolute Max: Absolute Min:

None

None

Relative Max: Relative Min:

How do you find the Extrema without a Graphing Calculator?

Check my blog!

OR Learn Calculus

Winplot: this is a good one because you can download it to your computer and then use it offline.

Finding zeros of a function:

Zeros of a function are x-intecepts of the graph.

One way to find zeros of a function is to FACTOR the function then find the zeros of each factor.

1.
$$y = 3x^{5} + 6x^{3} - 72x$$

 $= 3 \times (x^{4} + 2x^{2} - 24)$
 $= 3 \times (x^{2} + 6)(x^{2} - 4)$
 $= 3 \times (x^{2} + 6)(x \pm 2)$
 $= 3 \times (x^{2} + 6)(x \pm 2)$

Find ALL the zeros of each function.

1.
$$y = 3x^5 + 6x^3 - 72x$$

2.
$$f(x) = 2x^5 - 162x$$

2.
$$f(x) = 2x^{5} - 162x$$

$$= 2 \times (x^{4} - 8)$$

$$= 2 \times (x^{2} + 9) \times (x \pm 3)$$

$$= 2 \times (x^{2} + 9) \times (x \pm 3)$$

$$= 2 \times (x^{2} + 9) \times (x \pm 3)$$

How do you find the zeros of a function if you can't factor it?

By graphing

Zeros of a function are the values of x when y = 0.

Method 2: Finding Intersections

$$0 = x^4 + 2x^3 - 3x^2 - x + 3$$

Graph
$$Y_1 = x^4 + 2x^3 - 3x^2 - x + 3$$

and $Y_2 = 0$

use the option on the graphing calculator to find points of intersection.

2ND TRACE

5: intersect

zeros are: -2.81, -1

Finding zeros of a function with the graphing calculator:

Method 1: Finding ZEROS

$$y = x^4 + 2x^3 - 3x^2 - x + 3$$

Use the option on the graphing calculator to find zeros: 2ND TRACE

2: ZEROS

zeros are: -2.81, -1

When finding zeros by graphing you are only able to find the REAL zeros!

Find ALL real zeros of this function: $y = x^3 - x^2 - 5x + 3$

