For each Quadratic do the following:

- a. Find the Equation for the LOS.
- b. Find the Coordinates of the Vertex.
- c. Find the y-intercept.
- d. Tell if the quadartic has a Max or a Min.

1.
$$y = -\frac{1}{2}x^2 + 10x - 19$$

2.
$$y = 7(x+2)^2 - 9$$

9 Down

For each Quadratic do the following:

a. Find the Equation for the LOS.

b. Find the Coordinates of the Vertex.

c. Find the y-intercept.

Replace x with

d. Tell if the quadartic has a Max or a Min

Since a is positive the parabola opens up.

For each Quadratic do the following:

a. Find the Equation for the LOS.

 $X = \frac{-10}{-1} = 10$

 $\frac{2}{105}$ $x = -\frac{b}{100}$

b. Find the Coordinates of the Vertex.

(10,31)

c. Find the y-intercept.

In Standard Form when you replace x with zero the constant is the only thing left.

d. Tell if the quadartic has a Max or a Min.

Since a is negative the parabola opens down.

An object is shot into the air from the top of a 30 foot building. The following equation models the height of the object as a function of time: $h(t) = -16t^2 + 136t + 30$

- 1. Find the maximum height of the object.
- 2. Find the time it takes to get to the max height.
- 3. Find the time it takes for the object to reach the ground.
- 4. Find the time it takes the object to reach a height of 250 feet.

An object is shot into the air from the top of a 30 foot building. The following equation models the height of the object as a function of time:

$$h(t) = -16t^2 + 136t + 30$$

Round answers to the nearest hundredth

(t,h)

> This tells us to find the Vertex

1. Find the maximum height of the object.

h(4.25) = 319 f2. Find the time it takes to get to the max height.

Significant specification of the max height.

$$4.25 \text{ Sec}$$

$$4.25 \text{ Sec}$$

$$4.25 \text{ Sec}$$

$$4.25 \text{ Sec}$$

$$h(t) = -16t^2 + 136t + 30$$

4. Find the time it takes the object to reach a height of 250 feet.

$$250 = -16t^{2} + 136t + 30$$

$$-250$$

$$0 = -16t^{2} + 136t - 220$$

$$b^{2} - 4ac = 4416$$

$$-136 \pm 4416$$

$$-32$$

$$h(t) = -16t^2 + 136t + 30$$

3. Find the time it takes for the object to reach the ground.

$$0 = -16t^{2} + 136t + 30$$

$$6^{2} - 40c = 20416$$

$$-136 \pm 120416$$

$$-32$$

$$8.72$$