ALG2A Work over Breaks

Name:

1, Do only circled problems on the attached sheets

2. IF you currently have a grade of C- or below you can do any missing work and prepare for a retake over any test or guiz to be done the week of school when we return (Jan 9).

3. This packet will be worth 20 summative points [included in Quizzes category]

$$1) V = \frac{\pi}{3} r^2 h, \text{ for } h$$

$$(2.) S = L(1-r), \text{ for } r$$

$$(3) S = L(1-r), \text{ for } r$$

$$(3) S = \ell w + wh + \ell h, \text{ for } w$$

Solve for x. State any restrictions on the variables.

$$(4)\frac{4}{9}(x+3)=g$$

$$5 a(x+c) = b(x-c)$$

$$6) \frac{x+3}{t} = t^2$$

- Two brothers are saving money to buy tickets to a concert. Their combined savings is \$55. One brother has \$15 more than the other. How much has each saved?
- The sides of a triangle are in the ratio 5:12:13. What is the length of each side of the triangle if the perimeter of the triangle is 15 in.?
- Find three consecutive numbers whose sum is 126.

Solve each equation.

12.
$$7y + 5 = 6y + 11$$

14.
$$t-3\left(t+\frac{4}{3}\right)=2t+3$$

16.
$$3(x + 1) = 2(x + 11)$$

11.
$$5w + 8 - 12w = 16 - 15w$$

13.
$$1.2(x + 5) = 1.6(2x + 5)$$

15.
$$0.5(c + 2.8) - c = 0.6c + 0.3$$

$$(17) \ \frac{u}{5} + \frac{u}{10} - \frac{u}{6} = 1$$

Solve each inequality. Graph-the solutions.

$$(1) 16 - 4t \le 36$$

$$2. \ \ 2(m+3)+1>23$$

$$3.7 + 13(x + 1) \le 3x$$

4.
$$-6a < 21$$

$$(5)\frac{2}{3}(4x+5) > \frac{9}{4}x$$

6.
$$2[5x - (3x - 4)] < 3(2x + 3)$$

7.
$$8(x-5) \ge 56$$

8.
$$6 - x \le 7x + 3$$

9.
$$10 - x \ge -2(3 + x)$$

Solve each compound inequality. Graph the solutions.

$$(10)$$
 $-9 \le 4x + 3 \le 11$

12.
$$9x < 54$$
 and $-4x < 12$

14.
$$14 > 3x - 1 \ge -10$$

16.
$$2(x-1) < -4$$
 or $2(x-1) > 4$

$$\widehat{(11)}$$
 16x \le 32 or -5x < -40

13.
$$6(x + 2) \ge 24$$
 or $5x + 10 \le 15$

$$(17) 3x - 5 \ge -8 \text{ and } 3x - 5 \le 1$$

4.
$$|x + 5| > 12$$

5.
$$|k-3| \le 19$$

6.
$$|x+2| \ge 0$$

7.
$$2|t-5| < 14$$

$$(8.)|3x - 2| + 7 \ge 11$$

$$9.)5|2b+1|-3 \le 7$$

10.
$$|2 - 3w| \ge 4$$

11.
$$-3|7m - 8| < 5$$

12.
$$|2u| > 6$$

Solve each equation. Check for extraneous solutions.

13.
$$|4x| = 28$$

14.
$$|3x + 6| = -12$$

15.
$$|z-1|=7z-13$$

16.
$$|s + 12| = 15$$

17.
$$|-3x| = 63$$

18.
$$2|5x + 3| = 16$$

$$\boxed{19}, |6x + 7| = 5x + 2$$

20.
$$|7r - 4| = 24$$

21.
$$|3c| + 2 = 11$$

$$\sqrt{22}) \ 5|x+1| + 6 = 21$$

$$(23.)|3x + 5| - 2x = 3x + 4$$

24.
$$-|d+2|=7$$

Write in point-slope form the equation of the line through each pair of points.

$$(9.)(0,1)$$
 and $(3,0)$

10.
$$\left(\frac{1}{2}, \frac{2}{3}\right)$$
 and $\left(-\frac{3}{2}, \frac{5}{3}\right)$

$$(11.)(-3, -2)$$
 and $(1, 6)$

Write an equation for each line. Then graph the line.

- (22) through (-1, 3) and parallel to y = 2x + 1
 - through (2, 2) and perpendicular to $y = -\frac{3}{5}x + 2$
- (24). through (-3, 4) and vertical
- through (4, 1) and horizontal

Education, Inc., publishing as P.

For each function, determine whether y varies directly as x. If so, find the constant of variation and write the equation.

(12.)	x	у
	1	1
	2	4
	3	9

$$\begin{array}{c|ccccc}
\hline
14. & x & y \\
\hline
-2 & -1 & \\
2 & 1 & \\
5 & \frac{5}{2} & \\
\end{array}$$

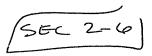
$$\begin{array}{c|cccc}
 & x & y \\
 \hline
 & -2 & -3 \\
 & 0 & 1 \\
 & 1 & 3
\end{array}$$

Write an equation for a direct variation with a graph that passes through each point.

20.
$$\left(-1, -\frac{2}{3}\right)$$

21.
$$\left(\frac{3}{5}, -\frac{7}{2}\right)$$

In Exercises 24–27, y varies directly as x.


24. If
$$y = 3$$
 when $x = 2$, find x when $y = 5$.

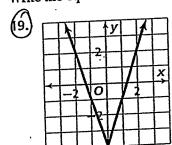
25. If
$$y = -4$$
 when $x = \frac{1}{2}$, find y when $x = \frac{2}{3}$.

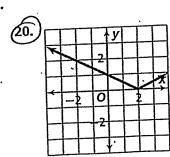
(6) If
$$y = -14$$
 when $x = -7$, find x when $y = 22$.

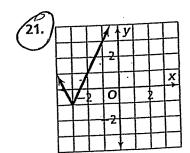
(27.) If
$$y = \frac{5}{17}$$
 when $x = 10$, find y when $x = 5$.

- A 15-minute long-distance telephone call costs \$.90. The cost varies directly as the length of the call. Write an equation that relates the cost to the length of the call. How long is a call that costs \$1.32?
- The distance a spring stretches varies directly as the amount of weight that is hanging on it. A weight of 2.5 pounds stretches a spring 18 inches. Find the stretch of the spring when a weight of 6.4 pounds is hanging on it.

Write an equation for each translation.


$$(7)$$
 $y = |x|, 1$ unit up, 2 units left


9.
$$y = -|x|$$
, 3 units up, 1 unit right


$$(8. y) = |x|, 4$$
 units right

10.
$$y = -|x|, \frac{3}{2}$$
 units down, $\frac{1}{2}$ unit right

Write the equation for each graph.

- Suppose your drama club is planning a production that will cost \$525 for the set and \$150 per performance. A sold-out performance will bring in \$325. Write an equation for the cost C and an equation for the income I for p sold-out performances. Find how many sold-out performances will make the cost equal to the income.
 - Suppose you bought eight oranges and one grapefruit for a total of \$4.60. Later that day, you bought six oranges and three grapefruits for a total of \$4.80. Now you want to find the price of each orange and of each grapefruit. Write an equation for each purchase. Solve the system of equations.

Solve each system.

$$\widehat{21} \begin{cases} y = x + 3 \\ 5x + y = 9 \end{cases}$$

$$24) \begin{cases} 14x + 2y = 10 \\ x - 5y = 11 \end{cases}$$

25.
$$\begin{cases} x + 5y = 1 \\ 2x = 2 - 10y \end{cases}$$

$$23. \begin{cases}
y = 2x + 3 \\
5x - y = -3
\end{cases}$$

$$(26.) \begin{cases} 0.3x + 0.4y = 0.8 \\ 0.7x - 0.8y = -6.8 \end{cases}$$

Solve each system.

1.
$$\begin{cases} x + y + z = -1 \\ 2x - y + 2z = -5 \\ -x + 2y - z = 4 \end{cases}$$
2.
$$\begin{cases} x + y + z = 3 \\ 2x - y + 2z = 6 \\ 3x + 2y - z = 13 \end{cases}$$
3.
$$\begin{cases} 2x + y = 9 \\ x - 2z = -3 \\ 2y + 3z = 15 \end{cases}$$

4.
$$\begin{cases} x - y + 2z = 10 \\ -x + y - 2z = 5 \\ 3x - 3y + 6z = -2 \end{cases}$$
5.
$$\begin{cases} 2x - y + z = -4 \\ 3x + y - 2z = 0 \\ 3x - y = -4 \end{cases}$$
6.
$$\begin{cases} 2x - y - z = 4 \\ -x + 2y + z = 1 \\ 3x + y + z = 16 \end{cases}$$

2.
$$\begin{cases} x + y + z = 3\\ 2x - y + 2z = 6\\ 3x + 2y - z = 13 \end{cases}$$

5.
$$\begin{cases} 2x - y + z = -4 \\ 3x + y - 2z = 0 \\ 3x - y = -4 \end{cases}$$

$$\begin{cases} 2x + y &= 9 \\ x - 2z = -3 \\ 2y + 3z = 15 \end{cases}$$

$$6. \begin{cases} 2x - y - z = 4 \\ -x + 2y + z = 1 \\ 3x + y + z = 16 \end{cases}$$