Without actually solving determine if each system of equations has 1, None, or Many solutions.

1.
$$y = 0.6x + 8$$
 $m = .6b = 8$ 2. $y = 2x$ $m = 8$

2.
$$y = 2x = 0$$

$$3x - 5y = 40$$
 $m = -6b = -8$ $8x + 4y = 12$ $-8x$

$$8x + 4y = 12$$

$$4 = \frac{40 - 3}{-5}$$

$$M = -2$$
 $Y = -8x + 3$

2. Graph this system of inequalitities.

A small company makes canoes and sailboats. Their budget for the month is \$28,800. Materials for a canoe cost \$1600 and for a sailboat cost \$2400. The company has the capacity to make 16 vessels each month. They sell canoes for \$3200 each and sell sailboats for \$7500 each.

1. Write a system of inequalities to model this situation.

c = # of canoes s = # of sailboats

- 2. Graph this system.
- 3. List the vertices of the solution region.
- 4. Write the Objective Function.
- 5. Find the number of canoes and sailboats they should make each month in order to maximize their income.

3. State the corners of the feasible region.
$$(O_lO) \quad (O_lIV) \quad (lO_lO) \quad (IZ_lY) \quad (C_lS)$$
 4. Write the Objective Function.

$$3200C + 7500S = I$$

5. Find the number of canoes and sailboats they should make each month in order to maximize their income.

35000+25002 The company should make 12 sailboats and 51,200 no canoes.