Solve by completing the square.

$$x^{2} + 6x + 15 = 0$$
-15 -15
$$x^{2} + 6x + 9 = -15 + 9$$

$$\sqrt{(x+3)^{2}} = \sqrt{-6}$$
No Real Sol

Imaginary Numbers:

$$\sqrt{-1} = i$$

1 is called the imaginary unit.

Simplify each.

Simplify each.

$$5\sqrt{-18}$$

$$5\sqrt{-9\cdot 2}$$

$$5\cdot 3i\sqrt{2}$$

$$= (15i\sqrt{2})$$

The terms Complex Number and Imaginary Number are quite often used interchangeably.

Even though they are NOT the same thing!

Complex Numbers:

Real Number: when b=0

Part

Imaginary Number: when b≠0 (a may or may not be zero)

Part

Examples of Imaginary #'s: 10 - 7i or 13i

Write each as a Complex Number in Standard Form

1.
$$2 + \sqrt{-9}$$

 $2 + 3i$

2.
$$\sqrt{-12} - 5$$

 $-5 + \sqrt{-12} \rightarrow \sqrt{4.3}$
 $= -5 + 2i\sqrt{3}$

a + bi

Simplify each expression:

1.
$$(6 - \sqrt{-64}) + (5 + \sqrt{-49})$$

 $(6 - 8i) + (5 + 7i) = 11 - i$

2.
$$(-11 + \sqrt{-9}) - (6 - \sqrt{144})$$

 $(-11 + 3i) - (6 - 12)$
 $(-11 + 3i) - (-6) = -5 + 3i$