

Another way to solve the following quadratic equation:

$$-12x^{2} + 27 = 0$$

$$-27 - 27$$

$$-12x^{2} = -27$$

$$-12 - 12$$

$$\sqrt{\chi^{2}} = \sqrt{\frac{9}{4}}$$

$$\chi = \pm 3/2$$

Solving Quadratic Equations with Square Roots: You can use Square Roots to solve a Quadratic Equation

ONLY IF there is no linear term (b = 0).... if there is an x^2 there can't also be an x.

In other words, the equation has to have the following form in order to solve with Square Roots: $ax^2 + c = 0$ or $ax^2 = c$

Steps to follow if solving using square roots:

- 1. Isolate x^2 or $(x^2)^2$ on one side of the equation
- 2. Take the square root of both sides
- 3. Finish solving for x (if necessary)

What are the solutions to this equation?

$$x^{2} + 81 = 0$$

 $-81 - 81$
 $\sqrt{x^{2}} - (-8)$ there is no real square root of -81

2. $6(x-1)^2 + 2 = 32$ -2 - 2 $\frac{6(x-1)^2 - 30}{6}$ $\sqrt{(x-1)^2 - 5}$ $x-1 = \pm 5$ +1 $x-1 = \pm 5$ +1 $x-1 = \pm 5$ +1 $x-1 = \pm 5$

Find the exact solutions to each by using Square Roots. 1. $2(x+3)^2 - 8 = 0$ +5 + 5 $2(x+5)^2 = -5$ $(x+5)^2 = 4^2 4$ x+3 = +2 -3 -3 -3 -3 $\chi = -1^{-5}_{1}$

You can now finish Hwk #19

Sec 5-5

Page 270

Problems 2, 3, 6, 7, 10, 11, 14, 15, 35, 51, 52