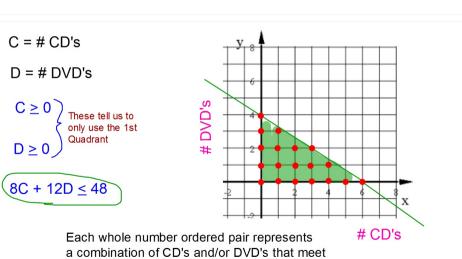
Anna is going to buy some candles. Small candles cost \$3.50 and large candles cost \$5 each. She wants to buy between 20 and 30 candles. Anna has only \$80 to spend. She wants at least 12 large candles. Write a system of FIVE inequalities to model this situation.

L= # Lg candles S= # Sm candles $3.55+51 \le 80$ $L \ge 12$ $20 \le 1 + 5 \le 30$ $1 \ge 0$ $1 \ge 0$

Find the TOTAL number of combinations of CD's and/or DVD's that would meet all the constraints.


I'm going to the store to buy some CD's and/or some DVD's. DVD's cost \$12 each and CD's cost \$8 each. I can spend no more than \$48 at the store.

Define variables and write three inequalities to represent all the constraints in this situation.

onstraints in this situation.
$$C \ge 0$$
 $D \ge 0$ $D \le 0$ $C \le 0$ $D \ge 0$

Find at least 5 combinations of CD's and/or DVD's that meet all of these constraints.

Constraint: A restriction or limit placed on a variable.

Each whole number ordered pair represents a combination of CD's and/or DVD's that meet all the constraints. There are 19 of these points in the solutions region (identified by the red dots).

Suppose I can buy no more than 3 CD's. Now how many combinations of DVD's and/or CD's will meet all of these constraints?

$$C \leq 3$$

Without solving, state the number of solutions to each system of equations.

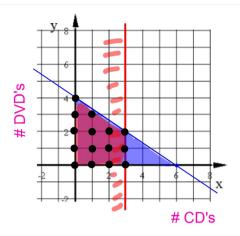
$$y = 2x + 7$$

$$y = -5x$$

$$y = 2x + 7$$
 $y = -5x$ $y - 3 = -\frac{3}{2}(x + 8)$

$$2x + 4y = -28$$

$$10x + 2y = 6$$


$$2x + 4y = -28$$
 $10x + 2y = 6$ $6x + 4y = -36$

$$C \ge 0$$
 $D \ge 0$

$$8C + 12D \le 48$$

 $C \le 3$ Graph this on top of the original graph.

the points indicated by black dots are the combinations of CD's and/or DVD's that meet all 4 contraints. There are 15 of these oredered pairs.

$$y = 2x + 7 \qquad M = 2$$

$$2x + 4y = -28$$

$$y = -28 - 2x = -7 - \frac{1}{2}x^{m} = -\frac{1}{2}$$

b)
$$y = -5x$$

$$10x + 2y = 6$$

$$y = 3 - 5x$$

$$y = 3$$

$$y =$$

Solve each of these systems of equations. You must use each method at least once: Elimination & Sustitution. State the method you used and write your answer as an ordered pair.

$$3x - 2y = 23 \qquad 2a$$

$$2d + 6e = -42$$

$$74x + 36y = 438.8$$

$$7x + 10y = -5$$

$$7x + 10y = -5 \qquad 9d + 8e = -56$$

$$81x - 45y = 41.4$$

Elimination

Elimination

c)
$$y-3 = -\frac{3}{2}(x+8) \implies y-3 = -\frac{3}{2}x - 12 \\ +3 \implies y = -\frac{3}{2}x - 9$$

$$6x + 4y = -36$$

$$y = -\frac{3}{6} - \frac{3}{6}x - 9$$

$$4 = -9 - \frac{3}{2}x$$

$$50 - \frac{3}{4}x = -9 - \frac{3}{2}x$$

$$50 - \frac{3}{4}x = -9 - \frac{3}{2}x$$

a)
$$5(3x - 2y = 23) \longrightarrow |5x - 10y = /15|$$

$$7x + 10y = -5 \longrightarrow + 7x + 10y = -5$$

$$22x = 1/0$$

$$22 = 22$$

$$22 \times = 5$$

$$35 + 10y = -5$$

$$-35 = 10y = -40$$

$$7(5) + 10y = -5$$

$$-35 = 10y = -40$$

$$7(70 = 70)$$

$$9 = -4$$

b)
$$2d + 6e = -42 \implies d = -\frac{42 - 6e}{2} = (-21 - 3e)$$

$$9d + 8e = -56$$

$$9(-21 - 3e) + 8e = -56$$

$$-189 - 27e + 8e = -56$$

$$-189 - 19e = -56$$

$$+189 + 189$$

$$-19e = /33$$

$$-19 - 21 - 3e$$

$$= -21 - 3e$$

$$= -21 - 3(-7)$$

$$= -21 + 21 = 0$$

Solve this system of equations. State your answers as ordered pairs.

Using a Graph:

$$y = |x - 3| - 1$$

 $y = 2x - 4$
Sol:
(2,0)

c)
$$5(74x + 36y = 438.8) \quad 370x + 180y = 2/94$$

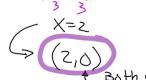
$$4(81x - 45y = 41.4) + 324x - 180y = 165.6$$

$$501: \quad 694x = 2359.6$$

$$694x = 3.4$$

$$74(3.4) + 36y = 438.8$$

$$251.6 + 36y = 438.8$$


Solve this system of equations. State your answers as ordered pairs.

Solve using Algebra:

$$y = |x-3|-1$$
 use substitution
 $y = 2x-4$ $2x-4 = |x-3|-1$
 $2x-3 = |x-3|$

$$X-3 = -(2x-3)$$

 $X-3 = -2x+3$
 $+2x$
 $3x-3 = 3$

$$3x-3 = 3$$
 $+3$
 $+3$
 $+3$
 $3x=6$
 3

$$X-3=2X-3$$

 $-X$
 $-3=X-3$
 $+3$

This is an extraneous Solution because You get different Values for y when en X=2 X=0

(2,0) EBoth eq's give y=0 when X=2