1. Make a scatter plot of the data below.	Sketo	h the so	atter plo	ot, lab	eling t	he axe
Years since 1988	0	2	4	6	8	10
Avg House Price (thousands of dollars)	165	154.5	124.5	115	128	165

HON ALG 2

Bellwork Thur. OCT 27,2016

a) Find a regression equation to model this data. Round to the nearest hundredth.

EQ:

b) Find the average price of a house in 1985. Round to the nearest dollar.

c) Find the average price of a house in 2000. Round to the nearest dollar.

d) When will a house be worth \$300,000?

2. Write a system of equations and use matrices to find the equation of the quadratic that contains these three points: (-3,8), (2,5), (4,9)

1. Make a scatter plot of the data below. Sketch the scatter plot, labeling the axes.
Years since 1988 0 2 4 6 8 10
Avg House Price (thousands of dollars) 165 154.5 124.5 115 128 165
a) Find a regression equation to model this data. Round to the nearest hundredth.
EQ:
$$Y = 1.83 \times 2 - 19.55 \times + 172.73$$

b) Find the average price of a house in 1985. Round to the nearest dollar.
 $X = -3$ 4 247.850
c) Find the average price of a house in 2000. Round to the nearest dollar.
 $X = -12$ 4 201.650
d) When will a house be worth \$300,000?
 $3cD = 1.83 \times 2 - 19.55 \times + 172.73$,
 $X = -4.6 \rightarrow \approx 1983$
 $X = 15.24 \rightarrow \approx 2003$

2. Write a system of equations and use matrices to find the equation of the quadratic that contains these three points: (-3,8), (2,5), (4,9) $\mathcal{Y} = \alpha x^2 + bx + C$ $(-3,6) \rightarrow 8 = 9a - 3b + C$ $(2,5) \rightarrow 5 = 4a + 2b + C$ $(4,9) \rightarrow 9 = 16a + 4b + C$ $\begin{pmatrix} 9 & -3 & 1 \\ 4 & 2 & 1 \\ 16 & 4 & 1 \end{pmatrix} \begin{bmatrix} 8 \\ 5 \\ 9 \end{bmatrix} = -0.23$ C = 3.97 $\mathcal{Y} = 0.37 \chi^2 - 0.23 \chi + 3.97$