

Fill in the d column. Then find the ratio $\frac{h}{d}$ for each post.

POST	d	h	h d	
1	24	1.5	.375	This sho
2	8	3	- 575	
3	12	4.5	-375	<u>h</u> is a Constan
4	16	6	.375	Constan
5	05	7.5	.375	

lows that

а nt Ratio

This becomes a line that passes through the origin.

Lines that pass through the origin have the following equation:

y = mx

These lines are called Direct Variation.

When is the only time that a line written in Standard Form will pass through the origin?

Ax + By = Cthe only time that Standard Form will be Direct Variation (passes through the origin) is if C=0.

Graph of direct variation

• The graph must be a line that passes through the origin.

You'll also see the following equation for Direct Variation: y = kx

k = slope of the line

k is also called the variation constant.

Solve the equation y = kx for k. $x = \frac{y}{x}$ Since k(slope) is the same everywhere on a given line it is said that Direct Variation is a

Constant Ratio

Since $k = slope = \frac{Y}{X}$ then $\frac{Y}{X}$ is always the same anywhere on a Direct Variation line.

Sec 2-3: Direct Variation Equations

Direct Variation is a special Linear Function.

• It has a constant ratio $\frac{Y}{X} = k$

k = the Variation Constant

• Direct Variation Equation:

$$\frac{y}{x} = k$$
 or $y = kx$

Does each table of values represent a Direct Variation relationship?

constant ratio

Y X

2.25

Υ

9

22.5

54

?

No, y/x is not a constant ratio

y=2.25 X

4=2.25/35

Direct Variation Equations:

$$\frac{y}{x} = k$$
 or $y = kx$

Is each equation direct variation? If yes, find the variation constant.

1. 4x + 2y = 10

No, since C isn't zero this line won't go through the origin. Also, if you solve for y you won't get y = kx, there will by a y-intercept other than zero.

Given the table shows a direct variation relationship, find the value of ?.

To solve Direct Variation situations you can use either equation or you can use a Proportion Since the ratio y/x is a constant, you could use any of the rows in the table to set up a proportion. $\frac{9}{4} = \frac{?}{35}$

If you cross multiple you get the same answer for y: y = 78.75

Remember the phrase: "Y varies directly with X" The amount of water in the tub varies directly with the amount of time the water has running. After 5 minutes there are 12 gallons in the tub. 1. Model this situation with a Direct Variation equation. 2. Find the amount of time it takes to fill a 32 gallon tub. $32 = 2.4 \times = 13.33 \text{ min}$