Summary

Properties of Real Numbers

Let *a*, *b*, and *c* represent real numbers.

Property	Addition	Multiplication
Closure	a + b is a real number.	<i>ab</i> is a real number.
Commutative	a + b = b + a	ab = ba
Associative	(a+b) + c = a + (b+c)	(ab)c = a(bc)
Identity	a+0=a, 0+a=a	$a \cdot 1 = a, 1 \cdot a = a$
Inverse	a + (-a) = 0	$a \cdot \frac{1}{a} = 1, a \neq 0$
Distributive	a(b+c) = ab + ac	

The Additive Inverse of a number is its OPPOSITE.

The opposite of a number is....

- The same distance from zero but on the other side of zero
- Same # but different sign
- The sum of opposites is always ZERO.

The Multiplicative Inverse of a number is it's RECIPROCAL.

The reciprocal of a number

- Is one over that number
- Has the same sign as that number
- The product of a number and its reciprocal is always ONE.

Find the opposite and reciprocal of each number			
	Opposite	Reciprocal	
-0.13= <u>13</u>	0.13	- <u>100</u> 13	
$5\frac{2}{3} = \frac{17}{3}$	-5 2/3	3	
a - b	-(a-b) $= -0 + b$	1 A-5	

Are there any numbers that are reciprocals of themselves?

If yes, which ones?

yes, (i - |

Solve this equation for Q. AB - QC = WSubtract AB from both sides -QC = W - ABDivide both sides by -C $Q = \frac{W - AB}{-C}$

 $AB - QC = W \qquad \qquad Q = \frac{W - AB}{-C}$

State the restrictions on the variables.

 $C \neq 0$

Solve this equation for K. State the restrictions on the variables. Here is one method: G(K + E) - X = DAdd X to both sides G(K + E) = D + Xdistribute the G $GK + C_1 E = D + X$ subtract GE from both sides GK = D + X - GEDivide both sides by G $K = \frac{D + X - GE}{C_1}$ Restrictions: $G \neq 0$

Solve this equation for K. State the restrictions on the variables.

Solve this equation for Y.

State restrictions on the variables.

 $\underbrace{\frac{RY-B}{G}}_{G} = K$ 1. Multiply both sides by G
2. Add B to both sides
3. Divide both sides by R

Factor out A from the two terms on the left side
 Divide both sides by the quantity C-E

С-Е 70 08

 $C \neq E$

Restrictions:

AC - AE = N

A(C-E) = N

 $A = \frac{N}{C-F}$

Solve this equation for *Q*. State restrictions on the variables.

