Factor.

$$3m^2 - 192 = 3(m^2 - 64)$$

 $= 3(m^2 + 8)$

To which set(s) of numbers does each number belong?

a) 1.777

Rational (repeating decimal) and Real

b) $-\frac{6}{2} = -3$

Integer, rational, real

c) 1.030030003... Irrational, Real this # has a pattern but it is not a repeating decimal.
d) √36 = 6 Natural, Whole, Integer, Rational, Real
e) 17/11 Rational, Real

To which one set of numbers would best decribe the kinds of numbers used in each situation?

- 1. Your shoe size. Since shoe sizes can have 1/2....Rational #'s
- 2. The number of TV's in a store. Since there can be zero TV's but not decimal amounts ... Whole #'s
- 3. The temperature given on the evening news. Since temperature could be negative and a newscaster probably wouldn't use decimals....Integers
- 4. The number of students on a teachers 1st hour roster. Since a teacher wouldn't have a class with zero students.....Natural #'s
- 5. The circumference of a circle. Since circles involve π....Irrational #'s

ummary

Properties of Real Numbers

Let *a*, *b*, and *c* represent real numbers.

Property	Addition	Multiplication
Closure	a + b is a real number.	<i>ab</i> is a real number.
Commutative	a + b = b + a	ab = ba
Associative	(a+b) + c = a + (b+c)	(ab)c = a(bc)
Identity	a+0=a, 0+a=a	$a \cdot 1 = a, 1 \cdot a = a$
Inverse	a + (-a) = 0	$a \cdot \frac{1}{a} = 1, a \neq 0$
Distributive	a(b+c) = ab + ac	

The Additive Inverse of a number is its OPPOSITE.

The opposite of a number is....

- The same distance from zero but on the other side of zero
- Same # but different sign
- The sum of opposites is always ZERO.

The Multiplicative Inverse of a number is it's RECIPROCAL.

The reciprocal of a number

- Is one over that number
- Has the same sign as that number
- The product of a number and its reciprocal is always ONE.

Find the opposite and reciprocal of each number				
		Opposite	Reciprocal	
-0	$.13 = -\frac{13}{100}$	+0.13	$-\frac{100}{13}$	
	$5\frac{2}{3} = \frac{17}{3}$	-5 ² 3	<u>3</u> 17	
	a - b	-(a-b) = -9+b	a-b	-

Are there any numbers that are reciprocals of themselves?

If yes, which ones?

The only numbers that are reciprocals of themselves are

1 and -1